a2 United States Patent

Jenkins

US009171396B2

US 9,171,396 B2
Oct. 27, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

SYSTEM AND METHOD OF PROCEDURAL
VISIBILITY FOR INTERACTIVE AND
BROADCAST STREAMING OF
ENTERTAINMENT, ADVERTISING, AND
TACTICAL 3D GRAPHICAL INFORMATION
USING A VISIBILITY EVENT CODEC

Inventor: Barry L. Jenkins, Pottsville, PA (US)

Assignee: PRIMAL SPACE SYSTEMS INC.,
Raleigh, NC (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 486 days.

Appl. No.: 13/445,792

Filed: Apr. 12, 2012
Prior Publication Data

US 2012/0256915 Al Oct. 11, 2012

Related U.S. Application Data
Continuation-in-part of application No.
PCT/US2011/042309, filed on Jun. 29, 2011, and a
continuation-in-part of application No.
PCT/US2011/051403, filed on Sep. 13, 2011, and a

(Continued)

Int. CL.
G09G 5/00 (2006.01)
GO6T 15/40 (2011.01)
U.S. CL
CPC GO6T 15/40 (2013.01); GO6T 2200/16

(2013.01); GO6T 2200/28 (2013.01); GO6T
2200/36 (2013.01)
Field of Classification Search
CPC GO6T 2220/28; GO6T 2200/36; GO6T
2200/16
See application file for complete search history.

2 VEWCHL

VIENCELL T

VEWOELL 1oy,

(56) References Cited

U.S. PATENT DOCUMENTS

4,928,250 A * 5/1990 Greenbergetal. ... 345/426
5,359,704 A * 10/1994 Rossignac etal. 345/422
5,553,206 A * 9/1996 Meshkat 345/423
5,579,455 A * 11/1996 Greene et al. ... 345/422
5,596,685 A * 1/1997 Ashton 345/421
5,729,672 A * 3/1998 Ashton 345/589
5,889,951 A * 3/1999 Lombardi ... 709/219
5914,721 A * 6/1999 Lim 345/421
5,999,187 A * 12/1999 Dehmlow et al. 345/420
6,028,608 A 2/2000 Jenkins
6,057,847 A 5/2000 Jenkins

(Continued)

OTHER PUBLICATIONS

Aila, Timo. “SurRender Umbra: A Visibility Determination Frame-
work for Dynamic Environments.” MS thesis. Helsinki U of Tech-
nology, 2000. Print.

(Continued)

Primary Examiner — Devona Faulk
Assistant Examiner — Charles I Beard

(74) Attorney, Agent, or Firm — Oblon, McClelland, Maier
& Neustadt, L.L.P.

(57) ABSTRACT

A system includes a server and a client computer device. The
server determines a graphical object visible from a view
region and determines one or more parameters defining the
graphical object visible from the view region. The server
further transmits the determined one or more parameters to a
client computing device. The client computing device
includes a processor to generate the graphical object using the
determined one or more parameters received from the server.
The client computing device further includes a display device
to display the generated graphical object within a computer
generated modeled environment.

23 Claims, 137 Drawing Sheets

US 9,171,396 B2
Page 2

Related U.S. Application Data

continuation-in-part of application No. 13/420,436,
filed on Mar. 14, 2012.

(60) Provisional application No. 61/360,283, filed on Jun.
30, 2010, provisional application No. 61/382,056,
filed on Sep. 13, 2010, provisional application No.
61/384,284, filed on Sep. 19, 2010, provisional appli-
cation No. 61/452,330, filed on Mar. 14, 2011, provi-
sional application No. 61/474,491, filed on Apr. 12,
2011, provisional application No. 61/476,819, filed on
Apr. 19, 2011.

(56) References Cited
U.S. PATENT DOCUMENTS

6,111,582 A *
6,115,050 A *
6,191,796 Bl *
6,215,503 B1*
6,226,003 B1*
6,259,452 B1*
6,259,461 B1*
6,266,064 Bl *
6,362,817 B1*
6,535,219 B1*
6,574,360 B1*
6,774,895 B1 *
6,782,130 B2

6,914,603 B2 *
6,933,946 Bl *

8/2000 Jenkinsccocoeverenene. 345/421
9/2000 Landau et al. ... 345/619
2/2001 TaIT ooooeeeieiieiein 345/581
4/2001 Snyderetal. 345/629
5/2001 Akeley 345/419
7/2001 Coorg et al. ... 345/421
7/2001 Brown 345/556
7/2001 Snyder 345/421
3/2002 Powers et al. 345/419
3/2003 Marshall et al. ... 345/581
6/2003 Berdardini et al. ... 382/154
8/2004 Papakipos et al. 345/422
8/2004 Guo

7/2005 Shimodaet al. 345/427
8/2005 Silvaetal. ... 345/582

6,978,230 B1* 12/2005 Klosowski et al ... 703/7

7,400,322 B1* 7/2008 Urbach 345/419

7,559,034 B1* 7/2009 Paperny etal. . .. 715/803

7,777,740 B2* 8/2010 Lee 345/420

7,831,471 B2* 11/2010 Adams .. . 705/14.26

7,834,883 B2* 11/2010 Adams 345/581

8,175,734 B2* 5/2012 Fogel et al. .. 700/98

8,253,731 B2* 82012 Hoguet 345/419

8,692,825 B2* 4/2014 Mejdrich et al. ... 345/419

8,743,114 B2* 6/2014 Kimetal. ... 345/422
2001/0047250 Al* 11/2001 Schulleretal. 703/1
2002/0097267 Al* 7/2002 Dinanetal. . 345/757
2002/0130888 Al* 9/2002 Perryetal. ... 345/619
2002/0133321 Al* 9/2002 Perryetal. 703/2
2002/0154174 Al* 10/2002 Redlich et al. ... 345/848
2002/0158865 Al* 10/2002 Dyeetal. 345/419
2002/0167518 Al* 11/2002 Migdal et al. 345/428
2002/0175914 Al* 11/2002 Marshall et al. ... 345/426
2002/0190995 Al* 12/2002 Lim ...ccoovviviiiiiiniinnns 345/581
2004/0070583 Al* 4/2004 Tsaietal. 345/419
2004/0075659 Al* 4/2004 Taubin 345/428
2004/0125103 Al* 7/2004 Kaufman et al. ... 345/419
2004/0169651 Al* 9/2004 Everittetal. 345/426
2004/0263511 Al* 12/2004 Westetal. 345/421
2005/0086612 Al* 4/2005 Gettman et al. ... 715/848
2005/0134588 Al* 6/2005 Ailaetal. 345/426
2005/0134605 Al* 6/2005 Hoppe etal. 345/611
2005/0223337 Al* 10/2005 Wheeleretal. 715/806
2005/0237376 Al* 10/2005 Roessleretal. ... 348/14.04
2005/0248570 Al* 11/2005 Stelly 345/423
2006/0082571 Al* 4/2006 McDaniel .. 345/419
2006/0232605 Al* 10/2006 Imamura .. 345/619
2007/0143082 Al* 6/2007 Degnan 703/1
2007/0176929 Al* 8/2007 Grablietal. . 345/427
2007/0206008 Al* 9/2007 Kaufman et al. ... 345/424
2007/0258650 Al* 11/2007 Marchal et al. 382/232
2007/0279415 Al* 12/2007 Sullivan et al. 345/427
2008/0071559 Al* 3/2008 Arrasvuori 705/1
2008/0172134 Al* 7/2008 Owen et al. .. 700/31
2008/0180440 Al* 7/2008 Stich 345/426
2008/0231630 Al* 9/2008 Shenkar et al. . .. 345/419
2009/0031246 Al* 1/2009 Cowtanetal. .. 715/786
2009/0063419 Al* 3/2009 Nurminen et al. ... 707/3

2009/0160856 Al* 6/2009 Hoguet 345/420

2009/0207169 Al*
2009/0237492 Al*

82009 Wakayama 345/420
9/2009 Kikinisetal. 348/47

2009/0276541 Al* 11/2009 Locketal. ... 709/247
2010/0030578 Al* 2/2010 Siddique etal. 705/3
2010/0045670 Al* 2/2010 O’Brienetal. ... 345/420

2010/0060640 Al1* 3/2010 Melikian etal. 345/427
2010/0073368 Al* 3/2010 Kimetal. 345/422
2010/0231582 Al* 9/2010 Turunetal. 345/419
2010/0289801 Al* 11/2010 Nachmanson 345/440
2011/0140928 Al* 6/2011 Renetal. 340/995.14
2011/0181606 Al* 7/2011 Sumner et al. .. 345/474

2011/0296319 Al* 12/2011 Dinanetal. ... 715/757
2012/0075303 Al* 3/2012 Johnsson et al. 345/421
2012/0249556 Al* 10/2012 Chandak etal. 345/473

OTHER PUBLICATIONS

Aila, Timo, and Ville Miettinen. “dPV'S: An Occlusion Culling Sys-
tem for Massive Dynamic Environments.” IEEE Computer Graphics
and Applications 24.2 (2004): 86-97.

Ailla, Timo, Ville Miettinen, and Otso Makinen. “DPVS Reference
Manual.” Aug. 2006. PDF file.

Aliaga, Daniel, et al. “MMR: An Interactive Massive Model Render-
ing System Using Geometric and Image-Based Acceleration.”” Pro-
ceedings of the 1999 Symposium on Interactive 3D Graphics . Proc.
of Symposium on Interactive 3D Graphics, Apr. 1999, Atlanta. New
York: ACM, 1999. 199-206. ACM Portal. Web. Jun. 9, 2010. <http://
portal.acm.org>.

Aliaga, Daniel G., at al. “Sea of Images.” Proceedings of the Confer-
ence on Visualization *02. Washington, DC: IEEE Computer Society,
2002. 331-38. ACM Portal. Web. Jun. 20, 2010. <http://portal.acm.
org>.

Amanatides, John, and Andrew Woo. “A Fast Voxel Traversal Algo-
rithm for Ray Tracing.” Paper presented at Eurographics 1987. PDF
file.

Bajaj, Chandrajit. “Computational Visualization” N.d. PDF file.
Dec. 11-15,2002.

Banerjee, Raja, and Jarek R. Rossignac. “Topologically Exact Evalu-
ation of Polyhedra Defined in CSG with Loose Primitives.” Com-
puter Graphics Forum 15.4 (1996): 205-17. Print.

Batagelo, Harlen Costa, and Shin-Ting Wu. “Dynamic Scene Occlu-
sion Culling using a Regular Grid.” Proceedings of the 15th Brazilian
Symposium on Computer Graphics and Image Processing. Washing-
ton, DC: IEEE Computer Society, 2002. 43-50. ACM Portal. Web.
Jun. 21, 2010. <http://portal.acm.org>.

Bernardini, Fausto, Jihad El-Sana, and James T. Klosowski. “Direc-
tional Discretized Occluders for Accelerated Occlusion Culling.”
Eurographics *2000. Ed. M. Gross and F. R. A. Hopgood. vol. 19.
N.p.: n.p., n.d. N. pag. Print.

Bittner, Jiri. “Efficient Construction of Visibility Maps using
Approximate Occlusion Sweep.” Proceedings of the 18th Spring
Conference on Computer Graphics . New York: ACM, 2002. 167-
175. ACM Portal. Web. Jun. 24, 2010. <http://portal.acm.org>.
“Hierarchical Techniques for Visibility Computations.” Diss. Czech
Technical U in Prague, 2002. Print.

Bittner, Jiri, Vlastimil Havran, and Pavel Slavik. “Hierarchical Vis-
ibility Culling with Occlusion Trees.” Proceedings of the Computer
Graphics International 1998. Washington, DC: IEEE Computer Soci-
ety, 1998. 207. ACM Portal. Web. Jun. 19, 2010. <http://portal.acm.
org>.

Bittner, Jiri, and Michael Wimmer. Report on Visibility Algorithms.
N.p.: n.p., 2005. Print.

Bittner, Jiri, et al. “Coherent Hierarchical Culling: Hardware Occlu-
sion Queries Made Useful.” Eurographics 2004. Ed. M.-P. Cani and
M. Slater. vol. 23. Oxford: Blackwell Publishing, 2004. N. pag. Print.
Blythe, David. “The Direct3D 10 System.” ACM Transactions on
Graphics (TOG) 25.3 (2006): 724-34. ACM Portal. Web. Jun. 20,
2010. <http://portal.acm.org>.

Bronnimann, H., et al. “Lines Tangent to Four Triangles in Three-
Dimensional Space.” Discrete & Computational Geometry 37.3
(2007): 369-80. ACM Portal. Web. Jun. 27, 2010. <http://portal.acm.
org>.

Bronnimann, H., et al. Transversals to Line Segments in R3. N.p.:
n.p., 2003. Print.

US 9,171,396 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Brunet, Pere, and Isabel Navazo. “Solid Representation and Opera-
tion Using Extended Octrees” ACM Transactions on Graphics
(TOG) 9.2 (1990): 170-97. Print.

Brunet, Pere, et al. “Hoops: 3D Curves as Conservative Occluders for
Cell-Visibility” Eurographics 2001. Ed. A. Chalmers and T.-M.
Rhyne. vol. 20. N.p.: n.p., n.d. N. pag. Print.

Butchart, J. H. “The Altitude Quadric of a Tetrahedron.” The Ameri-
can Mathematical Monthly 47.6 (1940): 383-84. Print.

Campbell, A. T., III, and Donald S. Fussell. “Adaptive Mesh Genera-
tion for Global Diffuse Illumination.” Proceedings of the 17th Annual
Conference on Computer Graphics and Interactive Techniques . New
York: ACM, 1990. 155-64. ACM Portal. Web. Jun. 24, 2010. <http://
portal.acm.org>.

Cano, Pedro, and Juan Carlos Torres. Representation of Polyhedral
Objects using SP-Octrees. Granada: n.p., n.d. Print. (created Jan. 5,
2002.).

Cano, Pedro, Juan Carlos Torres, and Francisco Velasco. “Progres-
sive Transmission of Polyhedral Solids using a Hierarchical Repre-
sentation Scheme.” Journal of WSCG 11.1 (2003): n. pag. PDF file.
Chan, Timothy. “A Minimalist’s Implementation of the 3-d Divide-
and-Conquer Convex Hull Algorithm.” Jun. 4, 2003. University of
Waterloo School of Computer Science. Timothy M. Chan’s Publica-
tions. Web. May 30, 2010. <http://www.cs.uwaterloo.ca/~tmchan/.
html>.

Charneau, Sylvain, Lillian Aveneau, and Laurent Fuchs. “Exact,
Robust and Efficient Full Visibility Computation in Plucker Space.”
The Visual Computer 23 (Jun. 2007): 773-82. Print.

Chen, Wei-Chao, et al. “Light Field Mapping: Hardware-Accelerated
Visualization of Surface Light Fields.” ACM Transactions on Graph-
ics (TOG) 21.3 (2002): 447-56. ACM Portal. Web. Jun. 20, 2010.
<http://portal.acm.org>.

Chhugani, Jatin. “High Fidelity Walkthroughs of Large Virtual Envi-
ronments.” Diss. The Johns Hopkins U, 2004. Print.

Chhugani, Jatin, et al. “vLOD: High-Fidelity Walkthrough of Large
Virtual Environments” IEEE Transactions on Visualization and
Computer Graphics 11.1 (2005): 35-47. ACM Portal. Web. Jun. 8,
2010. <http://portal.acm.org>.

Chin, Norman, and Steven Feiner. “Fast Object-Precision Shadow
Generation for Area Light Sources Using BSP Trees.” Proceedings of
the 1992 Symposium on Interactive 3D Graphics . Proc. of Sympo-
sium on Interactive 3D Graphics, 1992, Cambridge, Massachusetts.
New York: Association for Computing Machinery, 1992. 21-30.
ACM Portal. Web. May 30, 2010. <http://portal.acm.org>.

Chin, Norman, and Steven Feiner, “Near Real-Time Shadow Gen-
eration Using BSP Trees” ACM SIGGRAPH Computer Graphics
23.3(1989): 99-106. ACM Portal. Web. May 31, 2010. <http://portal.
acm.org>.

Chrysanthou, Yiorgos, Daniel Cohen-Or, and Dani Lischinski. “Fast
Approximate Quantitative Visibility for Complex Scenes.” Proceed-
ings of the Computer Graphics International 1998 . Washington, DC:
IEEE Computer Society, 1998. 220. ACM Portal. Web. Jun. 20, 2010.
<http://portal.acm.org>.

Chrysanthou, Yiorgos, and Mel Slater. “Shadow Volume BSP Trees
for Computation of Shadows in Dynamic Scenes.” Proceedings of the
1995 Symposium on Interactive 3D Graphics . Proc. of Symposium
on Interactive 3D Graphics, 1995, Monterey, California. New York:
Association for Computing Machinery, 1995. 45-50. ACM Portal.
Web. May 30, 2010. <http://portal.acm.org>.

Chrysanthou, Yiorgos, and Mel Slater. “Incremental Updates to
Scenes Illuminated by Area Light Sources.” Proceedings of the
Eurographics Workshop on Rendering Techniques '97 . London:
Springer-Verlag, 1997. 103-14. ACM Portal. Web. May 29, 2010.
<http://portal.acm.org>.

Cohen, Jonathan. “Rendering Software Acceleration.” Spring 2000.
PDF file.

Cohen-Or, Daniel, et al. “A Survey of Visibility for Walkthrough
Applications.” IEEE Transactions on Visualization and Computer
Graphics 9.3 (2003): 412-31. Print.

Cohen-Or, Daniel, et al. “Conservative Visibility and Strong Occlu-
sion for Viewspace Partitioning of Densely Occluded Scenes.”
Eurographics *98. Comp. N. Ferreira and M. Gobel. vol. 17. N.p.:
n.p., n.d. N. pag. Print. vol. 17, (1998) No. 3.

Cohen-Or, Daniel, and Eyal Zadicarlo. “Visibility Streaming for
Network-Based Walkthroughs.” Proceedings of Graphics Interface,
1998. N.p.: n.p., 1998. N. pag. Print.

Comba, Joao, and Bruce Naylor. “Conversion of Binary Space Par-
titioning Trees to Boundary Representation.” Geometric Modeling:
Theory and Practice: The State of the Art (Focus on Computer Graph-
ics). Ed. Wolfgang Strasser, Reinhard Klein, and Rene Rau. N.p.:
Springer Verlag, 1997. 286-301. Print.

Coorg, Satyan, and Seth Teller. “Temporally Coherent Conservative
Visibility”” Computational Geometry: Theory and Applications
12.1-2 (1999): 105-124. ACM Portal. Web. Jun. 19, 2010. <http://
portal.acm.org>.

Coorg, Satyan, and Seth Teller. “Real-Time Occlusion Culling for
Models with large Occluders.” Proceedings of the 1997 Symposium
on Interactive 3D Graphics . Symposium on Interactive 3D Graphics,
Providence, RI. New York: ACM, 1997. 83-ff. ACM Portal. Web. Jun.
19, 2010. <http://portal.acm.org>.

Correa, Wagner T., James T. Klosowski, and Claudio T. Silva. “Fast
and Simple Occlusion Culling.” Game Programming Gems 3. Ed.
Dante Treglia. N.p.: Charles River Media, 2002. N. pag. Print. Game
Programming Gems ser. 3.

Correa, Wagner T., James T. Klosowski, and Claudio T. Silva. IWalk:
Interactive Out-Of-Core Rendering of Large Models. N.p.: n.p., n.d.
N. pag. Print. (modified Sep. 4, 2013).

Correa, Wagner T., James T. Klosowski, and Claudio T. Silva. “Out-
of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Dis-
plays.” Proceedings of the Fourth Eurographics Workshop on Parallel
Graphics and Visualization . vol. 29. Aire-la-Ville: Eurographics
Association, 2002. 89-96. ACM Portal. Web. Jun. 20, 2010. <http://
portal.acm.org>.

Correa, Wagner T., James T. Klosowski, and Claudio T. Silva. “Vis-
ibility-Based Prefetching for Interactive Out-Of-Core Rendering.”
Proceedings of the 2003 IEEE Symposium on Parallel and Large-
Data Visualization and Graphics. Washington, DC: IEEE Computer
Society, 2003. N. pag. ACM Portal. Web. Jun. 20, 2010. <http://
portal.acm.org>.

Cozzi, Patrick John. “Visibility Driven Out-of-Core HLOD Render-
ing.” MS thesis. U of Pennsylvania, 2008. Print.

Dachsbacher, Carsten, et al. “Implicit Visibility and Antiradiance for
Interactive Global Illumination.” ACM Transactions on Graphics
(TOG) 26.3 (2007): n. pag. ACM Portal. Web. Jun. 20, 2010. <http://
portal.acm.org>.

Decoret, Xavier, Gilles Debunne, and Francois Sillion. “Erosion
Based Visibility Preprocessing.” Proceedings of the 14th Eurograph-
ics Workshop on Rendering. Proc. of ACM International Conference
Proceeding Series; vol. 44. Aire-1a-Ville: Eurographics Association,
2003. 281-88. ACM Portal. Web. Jun. 8, 2010. <http://portal.acm.
org>.

Demouth, Julien, et al. “Between Umbra and Penumbra.” Proceed-
ings of the Twenty-Third Annual Symposium on Computational
Geometry . New York: ACM, 2007. 265-74. ACM Portal. Web. Jun.
29, 2010. <http://portal.acm.org>.

Drettakis, George, and Fugene Fiume. “A Fast Shadow Algorithm for
Area Light Sources Using Backprojection.” Proceedings of the 21st
Annual Conference on Computer Graphics and Interactive Tech-
niques . New York: ACM, 1994. 223-30. ACM Portal. Web. Jun. 27,
2010. <http://portal.acm.org>.

Drettakis, Georgios. Structured Sampling and Reconstruction of Illu-
mination for Image Synthesis. Diss. U of Toronto, 1994. Toronto:
UMLI, 1994. AAINN92651. ACM Portal. Web. Jun. 24, 2010. <http://
portal.acm.org>.

Durand, Fredo. “3D Visibility: Analytical Study and Applications.”
Diss. U of Grenoble, 1999. Print.

Durand, Fredo. “Some Thoughts on Visibility.” N.d. PDF file. (cre-
ated Oct. 18, 2000).

Durand, Fredo, George Drettakis, and Claude Puech. “The 3D Vis-
ibility Complex: A New Approach to the Problems of Accurate Vis-
ibility”” Proceedings of the Eurographics Workshop on Rendering

US 9,171,396 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Techniques "96 . London: Springer-Verlag, 1996. 245-56. ACM Por-
tal. Web. Jun. 30, 2010. <http://portal.acm.org>.

Durand, Fredo, et al. “Conservative Visibility Preprocessing using
Extended Projections.” Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques. Proc. of Interna-
tional Conference on Computer Graphics and Interactive Techniques.
New York: ACM Press/Wesley Publishing Co., 2000. 239-48. ACM
Portal. Web. Jun. 8, 2010. <http://portal.acm.org>.

Edelsbrunner, Herbert. “Triangulations and Meshes in Computa-
tional Geometry.” Cambridge Journals 9 (Mar. 2001): 133-213. Cam-
bridge Journals. Web. Jun. 20, 2010. <http://journals.cambridge.
org>.

Eppstein, David. “Asymptotic Speed-Ups in Constructive Solid
Geometry.” Algorithmica 13.5 (1995): 462-471. Print.

Fogel, Efi, et al. “A Web Architecture for Progressive Delivery of 3D
Content.” Proceedings of the Sixth International Conference on 3D
Web Technology. Proc. of Virtual Reality Modeling Language Sym-
posium, Paderbon, Germany, 2001. New York: ACM, 2001. 35-41.
ACM Portal. Web. Jun. 20, 2010. <http://portal.acm.org>.
Funkhouser, Thomas A. “Visibility.” Spring 2006. PDF file.
Funkhouser, Thomas A. “A Visibility Algorithm for Hybrid Geom-
etry-and Image-Based Modeling and Rendering”” Computers and
Graphics 23.5 (1999): 719-28. Print.

Funkhouser, Thomas A. “Database Management for Interactive Dis-
play of Large Architectural Models.” Proceedings of the Conference
on Graphics Interface *96. Toronto: Canadian Information Process-
ing Society, 1996. 1-8. ACM Portal. Web. Jun. 20, 2010. <http://
portal.acm.org>.

Ghali, Sherif. “A Geometric Framework for Computer Graphics
Addressing Modeling, Visibility, and Shadows.” N.d. HTML file.
(Created Jun. 8, 1999).

Ghali, Sherif. “A Survey of Practical Object Space Visibility Algo-
rithms.” N.d. MS. Max Planck Institute for Computer Science,
Saarbrucken. (Created May 14, 2001).

Ghali, Sherif. “Object Space Visibility.” Paper presented at SIG-
GRAPH 2001. PDF file.

Ghali, Sherif, and Chris Smith. “Computing the Boundary of a Class
of Labeled-Leaf BSP Solids.” Proceedings of the 17th Canadian
Conference on Computational Geometry (CCCG’05). Proc. of Cana-
dian Conference on Computational Geometry, 2005, Windsor,
Ontario. N.p. n.p., 2005. 302-5. The Canadian Conference on Com-
putational Geometry. Web. May 29, 2010. <http://www.cccg.ca/>.
Gigus, Ziv, John Canny, and Raimund Seidel. Efficiently Computing
and Representing Aspect Graphics of Polyhedral Objects. Berkeley:
U of California, Berkeley, n.d. Print. (Created Sep. 13, 2002).
Gigus, Ziv, and Jitendra Malik. “Computing the Aspect Graph for
Line Drawings of Polyhedral Objects.” IEEE Transactions on Pattern
Analysis and Machine Intelligence 12.2 (1990): 113-22. ACM Portal.
Web. Jun. 27, 2010. <http://portal.acm.org>.

Goodrich, Michael T. “A Polygonal Approach to Hidden-Line and
Hidden-Surface Elimination.” CVGIP: Graphical Models and Image
Processing 54.1 (1992): 1-12. ACM Portal. Web. Jun. 27, 2010.
<http://portal.acm.org>.

Gorjanc, Sonja. Some Examples of using Mathematica in Teaching
Geometry. Zagreb: U of Zagreb, n.d. N. pag. Print. (Created Aug. 29,
2013).

Gotsman, Craig, Oded Sudarsky, and Jeffrey A. Fayman. “Optimized
Occlusion Culling Using Five-Dimensional Subdivision.” Comput-
ers & Graphics 23.5: 645-54. Print. (1999).

Gran, Carlos Andujar. “Octree-Based Simplification of Polyhecral
Solids.” Diss. Polytechnical U of Catalunya, 1999. Print.

Gu, Xianfeng, Steven J. Gortler, and Michael F. Cohen. “Polyhedral
Geometry and the Two-Plane Parameterization.” Proceedings of the
Eurographics Workshop on Rendering Techniques *97. London:
Springer-Verlag, 1997. 1-12. ACM Portal. Web. Jun. 29, 2010.
<http://portal.acm.org>.

Gueziec, Andre, et al. “Cutting and Stitching: Converting Sets of
Polygons to Manifold Surfaces.” IEEE Transactions on Visualization
and Computer Graphics 7.2 (2001): 136-151. Print.

Haines, Eric. “An Introductory Tour of Interactive Rendering.” IEEE
Computer Graphics and Applications 26.1 (2006): 76-87. ACM Por-
tal. Web. Jun. 20, 2010. <http://portal.acm.org>.

Hardt, Stephen, and Seth J. Teller. “High-Fidelity Radiosity Render-
ing at Interactive Rates.” Proceedings of the Eurographics Workshop
on Rendering Techniques 96 . London: Springer-Verlag, 1996. N.
pag. ACM Portal. Web. Jun. 29, 2010. <http://portal.acm.org>.
Haumont, D., O. Makinen, and S. Nirenstein. “A Low Dimensional
Framework for Exact Polygon-to-Polygon Occlusion Queries.” Pro-
ceedings of the Eurographics Symposium on Rendering. Ed. Kavita
Bala and Philip Dutre. N.p.: n.p., 2005. N. pag. Print.

Havemann, Sven, and Deiter W. Fellner. Generative Mesh Modeling.
Braunschweig: U of of Technology Muhlenpfordtstr, 2003. Print.
Heckbert, Paul S. “Discontinuity Meshing for Radiosity.”
Eurographics *92. N.p.: n.p., 1992. 203-16. Print.

Hedley, David. Discontinuity Meshing for Complex Environments.
Bristol: U of Bristol, 1998. ACM Portal. Web. Jun. 27, 2010. <http://
portal.acm.org>.

Hertzmann, Aaron, and Denis Zorin. “Illustrating Smooth Surfaces.”
Proceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques. New York: ACM Press/Wesley Publish-
ing Co., 2000. 517-26. ACM Portal. Web. Jun. 29, 2010. <http://
portal.acm.org>.

Hey, Heinrich, and Werner Purgathofer. “Occlusion Culling Meth-
ods.” Paper presented at Eurographics 2001. Print.

Hoffmann, Christoph M. “The Problems of Accuracy and Robustness
in Geometric Computation.” IEEE Transactions on Visualization and
Computer Graphics (Mar. 1989): 31-41. Print.

Hoffmann, Christoph M. Robustness in Geometric Computations.
N.p.: n.p., 2001. Print.

Hosseini, Mojtaba, and Nicolas D. Georganas. “MPEG-4 BIFS
Streaming of Large Virtual Environments and their Animation on the
Web.” Proceedings of the Seventh International Conference on 3D
Web Technology . Proc. of 3D Technologies for the World Wide Web
conference, Tempe, AZ, 2002. New York: ACM, 2002. 19-25. ACM
Portal. Web. Jun. 20, 2010. <http://portal.acm.org>.

Hubbard, Philip M. Constructive Solid Geometry for Triangulated
Polyhedra. Providence: Brown University, 1990. Print.

Hudson, T., et al. “Accelerated Occlusion Culling using Shadow
Frusta.” Proceedings of the Thirteenth Annual Symposium on Com-
putational Geometry . New York: ACM, 1997. 1-10. ACM Portal.
Web. Jun. 19, 2010. <http://portal.acm.org>.

Keyser, John, etal. “ESOLID—A System for Exact Boundary Evalu-
ation.” Paper presented at Proceedings of the Seventh ACM Sympo-
sium on Solid Modeling and Applications, 2002, Saarbriicken, Ger-
many. ACM Symposium on Solid and Physical Modeling. Web. May
23, 2010.

Kirsanov, D., P. V. Sander, and S. J. Gortler. “Simple Silhouettes for
Complex Surfaces” ACM International Conference Proceeding
Series. Proc. of the 2003 Eurographics/SIGGRAPH Symposium on
Geometry Processing. vol. 43. Aire-la-Ville: Eurographics Associa-
tion, 2003. 102-6. ACM Portal. Web. Jun. 17, 2010. <http://portal.
acm.org>.

Kleinberg, Jon, and Eva Tardos. “Algorithm Design.” N.d. PDF file.
Copyright 2005.

Klosowski, James T., and Claudio T. Silva. “Efficient Conservative
Visibility Culling Using the Prioritized-Layered Projection Algo-
rithm.” IEEE Transactions on Visualization and Computer Graphics
7.4 (2001): 365-79. ACM Portal. Web. Jun. 9, 2010. <http://portal.
acm.org>.

Koltun, Vladen, Yiorgos Chrysanthou, and Daniel Cohen-Or. “Vir-
tual Occluders: An Efficient Intermediate PVS Representation.” Pro-
ceedings of the Eurographics Workshop on Rendering Techniques
2000. London: Springer-Verlag, 2000. 59-70. ACM Portal. Web. Jun.
19, 2010. <http://portal.acm.org>.

Koltun, Vladlen, Yiorgos Chrysanthou, and Daniel Cohen-Or. “Hard-
ware-Accelerated from-Region Visibility Using a Dual Ray Space.”
Proceedings of the 12th Eurographics Workshop on Rendering Tech-
niques . London: Springer-Verlag, 2001. 205-16. ACM Portal. Web.
Jun. 19, 2010. <http://portal.acm.org>.

Krishnan, Shankar. “Efficient and Accurate Boundary Evaluation
Algorithms for Sculptured Solids.” Diss. U of North Carolina at
Chapel Hill, 1997. Print.

US 9,171,396 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Krishnan, Shankar, and Dinesh Manocha. Global Visibility and Hid-
den Surface Removal Algorithms for Free Form Surfaces. Chapel
Hill: U of North Carolina at Chapel Hill, 1994. Print.

Laidlaw, David H., W. Benjamin Trumbore, and John F. Hughes.
“Constructive Solid Geometry for Polyhedral Objects.”” ACM SIG-
GRAPH Computer Graphics 20.4 (1986): 161-170. ACM Portal.
Web. May 31, 2010. <http://portal.acm.org>.

Laine, Samuli. “A General Algorithm for Output-Sensitive Visibility
Preprocessing.” Proceedings of the 2005 Symposium on Interactive
3D Graphics and Games. New York: ACM, 2005.31-40. ACM Portal.
Web. Jun. 21, 2010. <http://portal.acm.org>.

Laurentini, Aldo. “The Visual Hull Concept for Silhouette-Based
Image Understanding.” IEEE Transactions on Pattern Analysis and
Machine Intelligence 16.2 (1994): 150-62. ACM Portal. Web. Jun.
27, 2010. <http://portal.acm.org>.

Leyvand, Tommer, Olga Sorkine, and Daniel Cohen-Or. “Ray Space
Factorization for From-Region Visibility”” ACM Siggraph 2003
Papers. Proc. of International Conference on Computer Graphics and
Interactive Techniques, San Diego, CA, 2003. New York: ACM,
2003. 595-604. ACM Portal. Web. Jun. 29, 2010. <http://portal.acm.
org>.

Lim, Hong Lip. “Toward a Fuzzy Hidden Surface Algorithm.” Pro-
ceedings of the 10th International Conference of the Computer
Graphics Society on Visual computing: Integrating Computer Graph-
ics with Computer Vision: Integrating Computer Graphics with Com-
puter Vision . New York: Springer-Verlag New York, Inc, 1992.
621-35. ACM Portal. Web. Jun. 8, 2010. <http://portal.acm.org>.
Lischinski, Dani, Filippo Tampieri, and Donald P. Greenberg. “A
Discontinuity Meshing Algorithm for Accurate Radiosity” IEEE
Computer Graphics and Applications 12.6 (1997): 25-39. Print.
Lorensen, William E., and Harvey E. Cline. “Marching Cubes: A
High Resolution 3D Surface Construction Algorithm” ACM SIG-
GRAPH Computer Graphics 21.4 (1987): 163-69. ACM Portal. Web.
Jun. 20, 2010. <http://portal.acm.org>.

Luebke, David. Collection of various lecture slides. N.d. Microsoft
PowerPoint file (Last printed Jul. 27, 1998).

Luebke, David, and Chris Georges. “Portals and Mirrors: Simple,
Fast Evaluation of Potentially Visible Sets.” Proceedings of the 1995
Symposium on Interactive 3D Graphics . Proc. of Symposium on
Interactive 3D Graphics, 1995, Monterey, CA. New York: ACM,
1995. N. pag. ACM Portal. Web. Jun. 9, 2010. <http://portal.acm.
org>.

Luka, Peter. “Generalized Conservative Visibility Algorithms.” May
30, 2003. MS. Massachusetts Institute of Technology, Cambridge.
Mantyla, Martti. “Boolean Operations of 2-Manifolds through Vertex
Neighborhood Classification.” ACM Transactions on Graphics 5.1
(1986): 1-29. ACM Portal. Web. May 31, 2010. <http://portal.acm.
org>.

Mattausch, Oliver, Jiri Bittner, and Michael Wimmer. “CHC++:
Coherent Hierarchical Culling Revisited.” Eurographics 2008. Ed. G.
Drettakis and R. Scopigno. vol. 27. N.p. Blackwell Publishing, 2008.
221-30. Print.

McKenna, Michael. “Worst-Case Optimal Hidden-Surface
Removal.” ACM Transactions on Graphics (TOG) 6.1 (1987): 19-28.
ACM Portal. Web. Jun. 29, 2010. <http://portal.acm.org>.

Meyer, Tom. “Introduction to Time-Critical Scheduling”” Oct. 5,
1995. PostScript file.

Mora, F., L. Aveneau, and M. Meriaux. “Coherent and Exact Poly-
gon-to-Polygon Visibility”” Journal of WSCG (Jan.-Feb. 2005): n.
pag. Print.

Moreira, Fabio O., Joao Comba, and Carla Maria Dal Sasso Freitas.
“Smart Visible Sets for Networked Virtual Environments.” Proceed-
ings of the 15th Brazilian Symposium on Computer Graphics and
Image Processing . Washington, DC: IEEE Computer Society, 2002.
373-80. ACM Portal. Web. Jun. 20, 2010. <http://portal.acm.org>.
Mount, David M. “CMSC 754 Computational Geometry.” Fall 2002.
U of Maryland Dept. of Computer Science, College Park. CMSC 754
Computational Geometry. Web. May 31, 2010. <http://www.cs.umd.
edu/~mount//>.

Myllarniemi, Varvana. “Dynamic Scene Occlusion Culling.” Paper
presented at Computer Graphics Seminar, Spring 2003. Print.
Naylor, Bruce F. “Partitioning Tree Image Representation and Gen-
eration from 3D Geometric Models.” Proceedings of the Conference
on Graphics Interface *92 . San Francisco: Morgan Kaufmann Pub-
lishers, Inc., 1992. 201-12. ACM Portal. Web. Jun. 20, 2010. <http://
portal.acm.org>.

Nehab, Diego, Joshua Barczak, and Pedro V. Sander. “Triangle Order
Optimization for Graphics Hardware Computation Culling” Pro-
ceedings of the 2006 Symposium on Interactive 3D Graphics and
Games . New York: ACM, 2006. 207-11. ACM Portal. Web. Jun. 30,
2010. <http://portal.acm.org>.

Nirenstein, S., E. Blake, and J. Gain. “Exact From-Region Visibility
Culling.” Proceedings of the 13th Eurographics Workshop on Ren-
dering. Proc. of ACM International Conference Proceeding Series,
Pisa, Italy, 2002. vol. 28. Aire-la-Ville: Eurographics Association,
2002. 191-202. ACM Portal. Web. Jun. 24, 2010. <http://portal.acm.
org>.

Nishita, Tomoyuki, Isao Okamura, and Eihachiro Nakamae. “Shad-
ing Models for Point and Linear Sources” ACM Transactions on
Graphics (TOG) 4.2 (1985): 124-46. ACM Portal. Web. Jun. 29,
2010. <http://portal.acm.org>.

“NVIDIA GPU Programming Guide.” N.d. PDF file. (Created Oct.
12, 2007).

Panne, Michiel Van de, and A. James Stewart. “Effective Compres-
sion Techniques for Precomputed Visibility.”” Paper presented at
Eurographics 1999. Print.

Petitjean, Sylvain. “A Computational Geometric Approach to Visual
Hulls.” International Journal of Computational Geometry and Appli-
cations 8.4 (1998): 407-36. Print.

Plantinga, Harry. “Conservative Visibility Preprocessing for Efficient
Walkthroughs of 3D Scenes.” Proceedings of Graphics Interface 93.
Toronto: Canadian Information Processing Society, 1993. 166-73.
Print.

Plantinga, Harry, and Charles R. Dyer. “Visibility, Occlusion, and the
Aspect Graph.” International Journal of Computer Vision 5.2 (1990):
137-60. ACM Portal. Web. Jun. 29, 2010. <http://portal.acm.org>.
Poulin, Pierre, and John Amanatides. “Shading and Shadowing with
Linear Light Sources.” Paper presented at Eurographics 90. Print.
Comput. & Graphics vol. 15, No. 2, pp. 259-265. 1991. Printed in
Great Britain.

Rege, Ashu. “Occlusion (HP and NV Extensions).” N.d. Microsoft
PowerPoint file. (Created Sep. 25, 2013).

Requicha, Aristides A. G., and Herbert B. Voelcker. “Boolean Opera-
tions in Solid Modelling: Boundary Evaluation and Merging Algo-
rithms.” File last modified on Jan. 1984. U of Rochester Coll of
Engineering and Applied Science. UR Research. Web. May 31, 2010.
<https://urresearch.rochester.edw/action?institutionalltemld=990>.
Rusinkiewicz, Szymon, and Marc Levoy. “Streaming QSplat: A
Viewer for Networked Visualization of Large, Dense Models.” Pro-
ceedings of the 2001 Symposium on Interactive 3D Graphics . New
York: ACM, 2001. 63-8. ACM Portal. Web. Jun. 20, 2010. <http://
portal.acm.org>.

Samet, Hanan. “Spatial Data Structures.” Modern Database Systems:
The Object Model, Interoperability, and Beyond. Reading: Addison
Wesley/Press, 1995. N. pag. Print.

Sander, Pedro V., et al. “Silhouette Clipping.” Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Tech-
niques. Proc. of International Conference on Computer Graphics and
Interactive Techniques, 2000. New York: ACM Press/Wesley, 2000.
327-34. ACM Portal. Web. Jun. 19, 2010. <http://portal.acm.org>.
Saona-Vasquez, Carlos, Isabel Navazo, and Pere Brunet. “Data
Structures and Algorithms for Navigation in Highly Polygon-Popu-
lated Scenes.” N.d. PDF file. (Created Nov. 7, 2007).
Saona-Vasquez, Carlos, Isabel Navazo, and Pere Brunet. “The Vis-
ibility Octree. A Data Structure for 3D Navigation.” Computers &
Graphics 23.5 (1999): 635-43. Print.

Schaufler, Gernot, et al. “Conservative Volumetric Visibility with
Occluder Fusion.” Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques. New York: ACM
Press/Wesley Publishing Co., 2000. 229-38. ACM Portal. Web. Jun.
27, 2010. <http://portal.acm.org>.

US 9,171,396 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

Schrocker, Gerald. “Visibility Culling for Game Applications.” Diss.
Graz U of Technology, 2001. Print.

Seidel, Raimund. “Small-Dimensional Linear Programming and
Convex Hulls Made Easy.” Discrete & Computational Geometry 6.5
(1991): 423-434. ACM Portal. Web. May 31, 2010. <http://portal.
acm.org>.

Sharman, James. “The Marching Cubes Algorithm.” N.d. HTML file.
(Created Sep. 11, 2013).

Sigueira, Marcelo, et al. “A New Construction of Smooth Surfaces
from Triangle Meshes Using Parametric Pseudo-Manifolds.” Com-
puters and Graphics 33.3 (2009): 331-40. ACM Portal. Web. Jun. 17,
2010. <http://portal.acm.org>.

Soler, Cyril, and Francois X. Sillion. “Fast Calculation of Soft
Shadow Textures Using Convolution.” Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Tech-
niques. Proc. of International Conference on Computer Graphics and
Interactive Techniques. New York: ACM, 1998. 321-32. ACM Portal.
Web. Jun. 8, 2010. <http://portal.acm.org>.

Staneker, D. “An Occlusion Culling Toolkit for OpenSG PLUS”
Paper presented at OpenSG Symposium, 2003. PDF file. OpenSG
Symposium (2003).

Stewart, A. James, and Sherif Ghali. “Fast Computation of Shadow
Boundaries Using Spacial Coherence and Backprojections.” Pro-
ceedings of the 21st Annual Conference on Computer Graphics and
Interactive Techniques. New York: ACM, 1994. N. pag. ACM Portal.
Web. Jun. 29, 2010. <http://portal.acm.org>.

Takusagawa, Ken. “Representing Smooth Surfaces.” Oct. 23, 2001.
HTML file.

Teller, Seth, and John Alex. Frustum Casting for Progressive, Inter-
active Rendering. Computer Graphics Group Publications Massa-
chusetts Institute of Technology, Jan. 1998. Web. Jun. 9, 2010.
<http://groups.csail.mit.edw// html#Technical _Reports>.

Teller, Seth J. “Computing the Antipenumbra of an Area Light
Source” ACM SIGGRAPH Computer Graphics 26.2 (1992): 139-
48. ACM Portal. Web Jun. 29, 2010. <http://portal.acm.org>.
Teller, Seth J. “Computing the Antipenumbra of an Area Light
Source.” 1992. PDF file.

Teller, Seth J. Visibility Computations in Densely Occluded Polyhe-
dral Environments. Diss. U of California at Berkeley, 1992. Berkeley:
U of California at Berkeley, 1992. GAX93-30757. ACM Portal. Web.
Jun. 29, 2010. <http://portal.acm.org>.

Teller, Seth J., and Pat Hanrahan. “Global Visibility Algorithms for
Illumination Computations.” Proceedings of the 20th Annual Con-
ference on Computer Graphics and Interactive Techniques . New
York: ACM, 1993. 239-46. ACM Portal. Web. Jun. 29, 2010. <http://
portal.acm.org>.

Teller, Seth J., and Michael E. Hohmeyer. Stabbing Oriented Convex
Polygons in Randomized O(n2) Time. ACM Portal. N.p., n.d. Web.
Jun. 29, 2010. <http://portal.acm.org>.

Thibault, William C., and Bruce F. Naylor. “Set Operations on Poly-
hedra Using Binary Space Partitioning Trees.” ACM SIGGRAPH
Computer Graphics 21.4 (1987): 153-162. ACM Portal. Web. May
31, 2010. <http://portal.acm.org>.

Vlachos, Alex. “Preparing Sushi: How Hardware Guys Write a 3D
Graphics Engine.” 2001. PDF file.

Wald, Ingo, Andreas Dietrich, and Philipp Slusallek. “An Interactive
Out-of-Core Rendering Framework for Visualizing Massively Com-
plex Models” ACM SIGGRAPH 2005 Courses . Proc. of Interna-
tional Conference on Computer Graphics and Interactive
Techniques . New York: ACM, 2005. N. pag. ACM Portal. Web. Jun.
20, 2010. <http://portal.acm.org>.

Wang, Yigang, Hujun Bao, and Qunsheng Peng. “Accelerated
Walkthroughs of Virtual Environments Based on Visibility Prepro-
cessing and Simplification.” Computer Graphics Forum 17.3 (1998):
187-94. Print.

Wang, Yusu, Pankaj K. Agarwal, and Sariel Har-Peled. “Occlusion
Culling for Fast Walkthrough in Urban Areas.” Eurographics 2001.
N.p.: n.p., 2001. N. pag. Print.

Weiler, Kevin, and Peter Atherton. “Hidden Surface Removal using
Polygon Area Sorting.” Proceedings of the 4th Annual Conference on
Computer Graphics and Interactive Techniques. New York: ACM,
1977. 214-22. ACM Portal. Web. Jun. 30, 2010. <http://portal.acm.
org>.

Weiler, Kevin, and Peter Atherton. Slides explaining polygon clip-
ping. N.d. PDF file. (Created Oct. 23, 2006).

Wloka, Matthias. “Batch, Batch, Batch: What Does it Really Mean?”
N.d. Microsoft PowerPoint file. (Created Mar. 12, 2003).

Wonka, Peter. “Occluder Shadows for Fast Walkthroughs of Urban
Environments.” FEurographics 1999. vol. 18, No. 3. Oxford:
Blackwell Publishers, 1999. N. pag. Print.

Wonka, Peter, Michael Wimmer, and Dieter Schmalstieg. “Visibility
Preprocessing with Occluder Fusion for Urban Walkthroughs.” Pro-
ceedings of the Eurographics Workshop on Rendering Techniques
2000. London: Springer-Verlag, 2000. 71-82. ACM Portal. Web. Jun.
8, 2010. <http://portal.acm.org>.

‘Wonka, Peter, Michael Wimmer, and Francois X. Sillion. “Instant
Visibility.”” Eurographics 2001. Ed. A. Chalmers and T.-M. Rhyne.
vol. 20. Oxford: Blackwell Publishers, 2001. N. pag. Print.

Wood, Zoe Justine. “Computational Topology Algorithms for Dis-
crete 2-Manifolds.” Diss. California Institute of Technology, 2003.
Print.

Worrall, Adam. “Dynamic Discontinuity Meshing.” Diss. U of
Bristol, 1998. Print.

Yoon, Sung-Fui, Brian Salomon, and Dinesh Manocha. “Interactive
View-Dependent Rendering with Conservative Occlusion Culling in
Complex Environments.” Proceedings of the 14th IEEE Visualiza-
tion 2003 (VIS’03). Washington, DC: IEEE Computer Society, 2003.
N. pag. ACM Portal. Web. Jun. 9, 2010. <http://portal.acm.org>.
Zhang, Hongxin, and Jieqing Feng. “Preliminary Mathematics of
Geometric Modeling (2).” Nov. 23, 2006. PDF file.

Zheng, Wenting, et al. “Rendering of Virtual Environments Based on
Polygonal & Point-Based Models.” Proceedings of the ACM Sym-
posium on Virtual Reality Software and Technology. New York:
ACM, 2002. 25-32. ACM Portal. Web. Jun. 20, 2010. <http://portal.
acm.org>.

Zhou, Kaichi, et al. “Visibility-Driven Mesh Analysis and Visualiza-
tion through Graph Cuts.” IEEE Transactions on Visualization and
Computer Graphics 14.6 (2008): 1667-74. Print.

* cited by examiner

U.S. Patent

Oct. 27, 2015

{ s
i ~

e g e

¥
FIHETORDER

s,

SLHCOUETTE EDGE

ENCOUNTERED

s

Sheet 1 of 137

US 9,171,396 B2

o

e ‘-»-_\.,“_~ o
i e i
" . X 3 e, o
e GUPRORTING & e -
- - oxy " " b3
g S‘; L - § i3
ey
e
s
64

CUNSTRUCT BE-ME
SUPPORTING QUAD
BETWEEN BILRCUETTE
ELGE ANG VIBWCELL
ERGE

3

CONSTRUCT SYME
RUPPORTING TRIANGLE
BETWEEN SHHDUETYE
ERGE AN VIEWCELL
VERTEX

20

{ONBTRUCTY BEME
WEDGE FROM
SURFPORTING QUAD BY
EATENDING DIAGONALS

et
i

...
-,
",

DONSTRUCT SYRE
WEDGE FROM

SUPPORTING TRIGNGLE

oy
e,
.

CONSTRULT SEMY
SUPPORTING (SWEPT)
TRIAMGLES

&
CONSTRUCY SEMY
WEDGES

;
e

¢ ni
{ END
oA

St

-

e,
-,

o ADIADENT

o

7 GLHOUETTE EOGES ™.

UM TR

.

CORNER OF
. CONTOUR T
30

FIGL

ITERSECT ADJAGENT
Sw-ME WEDGES

U.S. Patent Oct. 27, 2015 Sheet 2 of 137 US 9,171,396 B2

2

EDGE

i

MESH A

FIG. 2A

SWW2

VIEWCELL

V9

U.S. Patent Oct. 27, 2015 Sheet 3 of 137 US 9,171,396 B2

. WEDGE 2

HIGH

[
for

i
¥

_WEDGE

MESHA

FIG. 2B

—d
amand
& =
= =
o @
= ST
e
R
o

WEDGE_BACK

U.S. Patent Oct.

27,2015 Sheet 4 of 137

TP |

L RTARY

/
v, e

i
i
¥

o

US 9,171,396 B2

PA.PE = ENTIFY 30
OF EDGE.
?"*é";,) , - o F {} & ;&é‘gﬁ ‘\’\,\3
.,x.,\.._\% ‘JE R?E {:g g {:} ?, /\/_‘,/”

. LS ¥ -../".‘
. YEWCELL o
-

P}’“‘ ﬁ\\, N \,A\'_‘.w \J“’,u
7 aﬁc«wﬁ% Sy
7 FORML \’\, 1 i YES
QER%EQ oF 7 L340
'\‘\,. E‘."Hcmgih ‘/“'». f-f“ﬁi p“‘ \"‘»-.,,...-.-"':
NP ng o FRONTEAGNG ™
YES N L YR s (: FOUR AT LEART J;,;,
- " ONE VIEWCELL 7
/h.-'“‘ ,/.f ;‘\‘j g \.-\“‘ﬁ;::' \-4\35 ‘, g %\?E %(}, .‘f:./._/
FRONTRAGING ™. ND p
FOR AT LEART P "
. ONE VIEWCELL " e
e S, ,,ﬁg?{i}(ol) P \"&ﬂ\.\ .:__/"'A \%@5
oy A BRAND PE
YES | o e
vES | 350 RO T BADKFADING T
f,,« -\\"w.. i \\“‘*\, TO EADH) ,/«'“’
T EANG BB e “. OTHER -
BACKFAGING 35S
T T EACH |
ORGER SLHOUETTE BDGE
> 305 E% o)

MESH EDGE 18 FIRST

ORDER SLHOUETTE EDGE |

\, /

e

o f“'“"g
L END G
%, s

e

MESHEDGE 8 F FiS‘fa
GRDER SILHOUETTE EQGE

FR3.3

¥

,., e,

{ ﬁm =

'*«.,4

..r"

i

U.S. Patent Oct. 27, 2015 Sheet 5 of 137 US 9,171,396 B2

X POV
MDA —— o — e

i 415
VERTEN = FIRST VERTER OF VIEWCELL
420
< NEXT VERTEX

TRINGLE = TRIANGLE BETWEEN EDGEAND VERTEX

%
ANGLE = VISELESIDE ANGLE BETWEEN TRIANGLEAND
BACKFAGING COMPONENT POLYGON OF EDGE

-~ 438
H
o NGB T WO
e SUFPORTING ANGLE "
i ,
SUPPORTING ANGLE = ANGLE
¥
SUPPORTING VERTEX = VERTEX [S
‘g"’% § — ‘ v...._._._._*‘,,»’"""Nw.w#dﬁ %ﬁ:g{ ﬁh M“’.w”"‘v..\\’:*
L OSUPPORTING, | | SUPPORTING ANGLE
7LROLYBIN=TRE | T

| ND vES 1 e 4G

BE?’“&%SQ‘:E}?E& QEFE”E M?QB
SUPRJ R?M‘ YERTESR

4

455 - S

H e,

" e,

T e T, .
T VIEWOELL e ¥ESG
] VERTHZES =
. "
o

T, ERARINING e
., ek Ng"‘”n < e BUTPUT SUPPORTING POLYGON

U.S. Patent Oct. 27, 2015 Sheet 6 of 137 US 9,171,396 B2

N I
Vi VIEWCELL

/

]
CANDIDATE 5P
~ ANGLE-2
¥4 J
T sl ANGLE-
CANDIDATE SP2] -7 W~ L
é \“‘ \i
) | »

U.S. Patent

491 ﬁ

Oct. 27,2015 Sheet 7 of 137

US 9,171,396 B2

CANGIDATE SP = POLYGON BETWEEN FIRST-ORDER
SILHOUETTE EDGE AND VIEWCELL VERTEX (V)

'

\ 480

SIDEDNESS ORIENTATION OF CANDIDATE SP =
SIDEDNESS ORIENTATION OF BACKFACING COMPONENT
POLYGON OF FIRST-ORDER SILHOUETTE EDGE

\ 485

CANDIDATE SP IS
NOT FRONT-FACING
FOR EACH VIEWCELL
VERTEX?

VIEWCELL VERTEX (V) IS
A SUPPORTING VIEWCELL
VERTEX, CANDIDATE SP IS

489
(.

VIEWCELL VERTEX (V) IS
NOT A SUPPORTING

sp VIEWCELL VERTEX,

CANDIDATE SP IS NOT SP

FIG. 4C @

U.S. Patent Oct. 27, 2015 Sheet 8 of 137 US 9,171,396 B2

FRIOR ART

v,

FG. 4t FIG. 4D

U.S. Patent Oct. 27, 2015 Sheet 9 of 137 US 9,171,396 B2

L]
B = INGIDE CORNER VERTEX OF MESH SRHULETTE -

¥ m‘ VEWOERLL ‘v‘FR*EX SUPPOIRTING ONE
f“i HEBLHDUETTE EDGE 0F INSIDE CORNER

AW END = VIRWCELL VERTEX SUPPORTING OTHER
FAESH SHLHOUETTE EOGE OF MNSIDE CORNER

3’ e EA

CURRENT POLYEON = BUPPORTING POLYGON
BETWEEN 8y _BTART AND CORRESPONDING BELGE

A ‘»f‘??‘??ﬂ‘(= "“wﬁ?'f'fi
[A % 11 YERTEX OF
SWEPT EOGE
. g CW = \ YES 7
S BWENDY TR BN

. -
N, -

o Sy 545
CURRENT ANGLE = ANGLE MAX |

588

BOGE = FIMBT VIEWCELLEDGE SHARING QYWY BB

BB e EDGE = MEXT ERGE s

w_.‘,,w' v..,\"‘% i
e R EOGE PROMAN e, MO
e Ji{}ﬁﬁ‘?‘?ﬁ e

w’xﬁ £ = TRIANGLE ”‘S‘*ﬁﬁ‘??ﬁﬁ EDGE AND MY
%
ANGLE » QULLUDEDSIDE ANGLE BETWEEN TRIANGLE
AMG D %RQEWF’? A YON

B85 X
ﬁ',,«'ﬁl‘-““..' o N .*.»,,,_’.\M“ . ?.::)
ANGLE < s
T QURRENTANGLE .
57 S

SEE FIG. 58 afs SEE FIG. 58, oo b
»**”?, 52 (53 (54}
o FIGBA g

e e

U.S. Patent Oct. 27, 2015 Sheet 10 of 137 US 9,171,396 B2

2T

EOR Y s

EBet} AN I PSRN

Ny’ s (53} {54}
SEE FIG. BA Y

SEE FIG. BA

K

CURRENT ANGLE = ANGLE

kA

SWEPT EDGE = BDGE

b

SYWEFT TRIANGLE » TRIANGLE

¥y

i Y

LT EDBES SHAR
T, WY RERIAR

YES

e

R

: e,
o,

N

SWEPT_TRIANGLE

#

CURRENT POLYGON

- 593
3

CUTPLUY SWEPT TRIANGLE

B4

CONSTRUCT SEMY WERGE FROM SWEPT TRIANGLE

FiGz. 5B

U.S. Patent Oct. 27, 2015 Sheet 11 of 137 US 9,171,396 B2

E%E‘
e o
CANDHDATE 8P » POLYGUN BETWEEN INSIDE.CORNER
FIRST.CRDER SHUHOUETTE VERTEY AND VIEWCELL
EBGE £
¥
SIIEDNESS R E%&‘i"{}?é OF CANIDATE SP =
SHOEDNESS ORENTATION OF BACEFACING CUMPONENT
PULYGON OF FIRET iL}R{}EQ SHHOUETTEEDGE OF | ™
HSNECORNER FIRSTORDER SHHOUETTE VERTEX 5

cﬁ A

.'
-.

.

S ,./

s
o
Es 3

i

o
e
o
e

vES L7 CANDIDATE SRS “ wo
el NOT FRONTEAGING P

" FOREACHWMEWCELL 7
859 T Mo VERTERS e T

¥

Q/'c
4

; Ml T VIEWCELL VERTEX (B 18
& {M e, i 3
%if??ff% 6 fﬂm S NOT A SUPPORTING

EDGE, CAND mg SRR
s ap VIFWCELL EDGE,

CANCHDATE 2P 16 NOT BF

A
o ™
§ERD

i

U.S. Patent Oct. 27, 2015 Sheet 12 of 137 US 9,171,396 B2

jpa—

s % .\\

{ BTARY §
*hZM<_q3,.-Mf~"f..

SUPPORTING POLYGON

CONNECTING EDGES = EDGES CONNECTING VIEWCELL | J
VERTEX(S} AND MESH SILHOUETTE VERTICES

FORM 2 RAYS PARALLEL TO CONNECTING EDGES AND | /

INTERSECTING THEM AT MESH SLHOQUETTE EDRE
VERTICES DIRECTED AWaY FROMVIEWCELL

SV _ME WEDGE » SEMVNFINTE POYGON FORMED BY
RAYS AND SUPPORTED MESH SLHOUETTE EDGE
s’/v_ ¥ M\’&:
(enp)

E1G. BA

P
{START)
SWEPT TRIANGLE

-~
-

CONNECTING EDGES = EDGES CONNECTING VIEWCELL | /
VERTICES AND ISSIDE CORNER MESH SLHOUETTE
VERTEX

K A

FORM 2 RAYS PARALLELTO CONNEDTING EDGES AND

s
£
L8

EOGE VERTEX DIRECTED AWAY FROM VIEWCELL
v - £40
S5 MV WEDGE = SEMUINFINTE TRIANGLE FORMER BY 1/
RAYS AND INSIDE CORNER MESH SLHOUETTE VERTEX
L
(8o

FiG. 88

U.S. Patent Oct. 27, 2015 Sheet 13 of 137 US 9,171,396 B2

VIEWCELL

[o B =]

i

U.S. Patent Oct. 27, 2015 Sheet 14 of 137 US 9,171,396 B2

Vs VIEWCELL \{i
':'. [VS
/ N
|
V%\ |
Al
V5
/
V8

FIG. 7B1

U.S. Patent Oct. 27, 2015 Sheet 15 of 137 US 9,171,396 B2

FIG. 7B2

U.S. Patent Oct. 27, 2015 Sheet 16 of 137 US 9,171,396 B2

VIEWCELL

\‘ 5

FIG. 7C1

U.S. Patent Oct. 27, 2015 Sheet 17 of 137 US 9,171,396 B2

FIG. 7C2

EWCELL

i

U.S. Patent Oct. 27, 2015 Sheet 18 of 137 US 9,171,396 B2

SVMEWA_~ /

FIG. 7C3

U.S. Patent Oct. 27, 2015 Sheet 19 of 137 US 9,171,396 B2

Yy VIEWCELL .

[\
‘\X SVVB "E\

FIG. 7D1

U.S. Patent

Oct. 27, 2015 Sheet 20 of 137

VIEWCELL Y

V1 / g
U SV N
S i
v’ij{
777777777777 vy
$P3 L
Vs A
SV
SPA i
B

SY-MEWB

FIG. 7D2

US 9,171,396 B2

SV-ME WA

U.S. Patent Oct. 27, 2015 Sheet 21 of 137 US 9,171,396 B2

VIEWCELL V2

[\

. Vg
Vg SWB
R N

SYMEWA

SV-ME WE

FIG. 703

U.S. Patent Oct. 27, 2015 Sheet 22 of 137 US 9,171,396 B2

(28]

Vs VIEWCELL 1%

Vi sWe

P
/
=N
<2

/ oy
!) X

SVVA

Wik -
E WA

Sy

2

/

SVME WG

FIG. 7D4

U.S. Patent Oct. 27, 2015 Sheet 23 of 137 US 9,171,396 B2

¥ VIEWCELL

y < N/ S‘;vc V{

acy

<3

SY-MEWCR

FiG. 705

U.S. Patent Oct. 27, 2015 Sheet 24 of 137 US 9,171,396 B2

¥

VIEWCELL Y

FIG. 8A1

U.S. Patent Oct. 27, 2015 Sheet 25 of 137 US 9,171,396 B2

FIG. BAZ

NCELL

E‘.J

;
Vi
.

U.S. Patent Oct. 27, 2015 Sheet 26 of 137 US 9,171,396 B2

V WAB

SE-M

FIG. 8A3

SYVB
N

Y

U.S. Patent Oct. 27, 2015 Sheet 27 of 137 US 9,171,396 B2

£

%
¥

™~ SVEME 1A

i..
it =
(24158

o
=
=
e
=
Lt
95

FIG. 8A4

U.S. Patent Oct. 27, 2015 Sheet 28 of 137 US 9,171,396 B2

VIEWCELL Vo

Lo

'V3

Vg SYVB

FIG. 8B1

U.S. Patent Oct. 27, 2015 Sheet 29 of 137 US 9,171,396 B2

Vs VEE’\;’E;CELL Vi

, N V3
vy SVVR N
o

f - . \\ V7
A \/’5 \‘ /
S — ¢

FIG. 8B2

U.S. Patent Oct. 27, 2015 Sheet 30 of 137 US 9,171,396 B2

" VEWCELL ¥
I
v SWR NS
. N
vl
9

T SEMV B

FIG. 8B3

U.S. Patent

Oct. 27, 2015

VIEWCELL

V4 SWWB

Sheet 31 of 137

FIG. 8B4

SY-ME WR

US 9,171,396 B2

U.S. Patent Oct. 27, 2015 Sheet 32 of 137 US 9,171,396 B2

(3
&5
m\ ™

VIEWCELL

U.S. Patent Oct. 27, 2015 Sheet 33 of 137 US 9,171,396 B2

VA
FlG. 9A

U.S. Patent Oct. 27, 2015 Sheet 34 of 137 US 9,171,396 B2

v VIE;’;CELL Vg
Yy SYVB K
N |
|
VS
N
/ _ \\ \/7
Vs 7
/ —
° s NG

WPLANE B

FIG. 9B

US 9,171,396 B2

Sheet 35 of 137

Oct. 27, 2015

U.S. Patent

J6 9Ol

VARG w>

N

M AT\,

QM AVEIS ~y

Y ANAS~

e TEOMIA

U.S. Patent Oct. 27, 2015 Sheet 36 of 137 US 9,171,396 B2

Ay}

\!7

7 VIEWCELL ¥
/ Y
V4 SYVB N
o
&

SYVA

A WPLANEA

SV-MEWB

FIG. 9D

U.S. Patent Oct. 27, 2015 Sheet 37 of 137 US 9,171,396 B2

YIEWCELL

FIG. 10A

U.S. Patent Oct. 27, 2015 Sheet 38 of 137 US 9,171,396 B2

S
FiG. 108

o8]
=,
&
\“3‘,/’ e \ o
e -
’//’"
e
Lo &
|
‘1
- |
o |
Lid :
Gar T ‘:
= l
|
1
= ‘a

U.S. Patent Oct. 27, 2015 Sheet 39 of 137 US 9,171,396 B2

w0 o3
e e
== =
= =
o= =
5

LR

(0] (]

JEDGET

D

i

WEDGEZ™

MESHA

FIG. 1A

VCELL

EW

.
b

v

e

V1

U.S. Patent

MESHA

Oct. 27, 2015

DGE

Sheet 40 of 137

\
¥

JEDCEZ

i

Vg SWV1

US 9,171,396 B2

FIG. 1B

U.S. Patent Oct. 27, 2015 Sheet 41 of 137 US 9,171,396 B2

SE-MY WC

[n]
=
= g%
3.
LR
=
b
b
o~ @
= socoosent
—
&> b
o
-
Led e
= - =
== e
il o
P (==
=
O\ e
pved

U.S. Patent Oct. 27, 2015 Sheet 42 of 137 US 9,171,396 B2

(Stapr | IDENTIFYALL FRSTORDER SILHOUETTE EDGES ONALLMESH |
'*«-,,,_M w»"" ?ﬁi&?"é\?wh \ .
¥ J . £

CONSTRUCT PRIMARY WEDGES ONALL BIRSTORDER |
SILHOUETTE EDGES USING PIVOT-AND- SWEE 2

PLACE WEDGES IN WEDGE_UST
x el
“““ FIRSTWELGE INWEDGE LIBT o
» 12

| SEGS=DETERMINE "0 WEDGE” VIBIBLE NTERSECTIONS
OF MEGH TRIANGLES ANDYWEDGE USHG 20 MESH

TRAVERSAL PROCESS WHICH OUTPUTS COMPOUND
SILHOUETTE VERTICES (0SVS) 4325
SET BOUNDARIES OF CONSERVATIVE FIRST.ORDER UMBRAL |
DISCONTINUITY MESH = VISIBLE_SEGS R

GONSTRUCT SECONDARY BEMY WEDGES ON O5YS USNG
AWEER BETWEEN CBV'S WEDGE'S SUPRORTING VIEWCELL I
YERTICES {SW)S 1240

ADD SEMY WEDGES ON CBVETO WEDGE USY

4250
.............. HEXT WEDGE .
i WEDGE LIBY
CONDUCT POINT-OUOLUSION TERT FOR ONE POINT OF
EADH REGH a&% OF FBIRST.ORDER UBRAL
DISCONTINUITY MESH e 285
¥
P FIRST.ORDER PV » ESH TRIANGLES & TRIANGLE
i END *@w FRAGMENTS NOT INSIDE OCCQLUDBED REGIONS OF Ty .
I HIRST-ORDER UMBIRAL DISCONTINURY MESH A

U.S. Patent

Oct. 27, 2015

3%5‘{?
T

Sheet 43 of 137

US 9,171,396 B2

TRAVERDE MEBM TGO

UNTRAVERSED TRIANGLE

MEXT
ijfé‘?ﬁa??%?{i}

i‘éé‘ﬁ
{‘\‘\

P

T UNTRAVERSED

TRIANGLE N

.. TRINC SHAFY

‘,,-.

ssze ff

SN
e "N,
TRIANGLE
CONTAI &S
WEDGELRP

d
. INTERSECT t"’i‘s A

o P
4“'/» /
,.»i/ i r

e

.

o

YES

.,

"
-

o

S
i L

s

biﬁ?&'f Q ERL?‘ MC

INTERSECTION

PROCESS

TRIANGLE
CONTAING
SHHOUETTE
EDGE

Y A

~ P
R

et A5

WIERTRD
TRIANGLE
FORMBCOYLLE

\,’% o
N OVERLAR

DRARHY A

LISING "§'¥'§§~af{§ b

i*i.»*%? H

.
.,
., ,
. ¥E& I
"1} E t{%?} S
-:‘"/‘

k.

K

.|

PROUESS

JUNP TRAVERSALTO

EE}LE

4382
{ ﬁ?%i}

FIGL 13

CVERLYING COMPONENT
TRIANGLE

LEND)

U.S. Patent

wwﬁ

mf%”)

e

Oct. 27, 2015

Sheet 44 of 137

SELECT SEED TRISEG I
203 SEED MESH

1 CONBTRUCT CONTARMENT PORNTSON |
SEED MESH LISING RAY DASTING

é‘«,.“ [P,

FROMAVLE 2D MESH TRAVERGAL
STARTING WITH S &ﬁJ TRIANGLEISES

”‘P,..mw o,

US 9,171,396 B2

4410

YES " ANY EXISTING SUSPENDED
... IDWESH TRAVERSAUS?
3 T hﬁﬁ'”'m:”w*”"w“ﬁiv»w'\
| X,
4 ”’ggﬁ - ,«.«"",‘ J\\"'«.
O e TRUSEG I |
~.v.v.v:v.~l(‘;\ﬁv ‘::Ei}h”ﬁg J;*_;\ P
M SHAFT? Lo
N\“'-“ I’VA‘P ’ 4 g LK S =
S FROMACE ON-WEDSE
YES WISHULITY MAP COMPLETE
X
W, o o
- .»’ o \5’""'&,\(i’\?& 3/"
T UNTREVERBED e ygs
TRISED I REG- e
S VCESHAPT? 1440
h“"\,\ w«"’ A3

1445

N /

P —_

1485

(.K’}

SR 30 TRAVERSAL YO
CLOBER UNTRAVERSED
TRISISEGS INSHAFT

/ \

" RYON :}::Ge
S ANY

e

CAN VQL?I;? SUNTANMENT
PUANTS Ol DORNECT
MEIH SEGR

g

POLYLINE P
AGGREGATE e o 450
UMBRAE / *..
N, PLAGE £ NOT REINITIATE Ny ggé X
\ / TRAVERSAL i
SEINITIATE o B
g TRAVERSAL ~+(END

G, 14

U.S. Patent

Oct. 27, 2015

Sheet 45 of 137

ENCOUNTER UNTRAVERSED BEGMENT {3?{:{

RY 5 oo

NEXT 1508 SUSPEND & JUMP 2D TRAVERSAL
o UNTRAVERSED L ST S, > TOCLUSER UNTRAVERSED
SEG ‘w;_\ TRYSEGS IN SEG-VOE SHAFT
Mqgpsl 7 UNTRAVERSED T YES INTERRUPT TRAVERSAL AT
- < TRUBEGIN SEG- v pal OUCLUSION OR CONTANNENT
S VCESHAFT? 7 BOUNDARY
@D N o @y e
- :”Vg}/% e K ~
B, o CONSTRUGT WEDGE LINE
e ewrtaing (4. ON CBV BY PIVOT 10
o7 SEGCONTARS ™. yes SUPPDRTING VEWCELL
& DCCLUBION OR ELEMENT VCE)
~.. CONTANMENT 7 }
S BOUNDARY? 7 e
e e @m W OWEDGEY
(\\“\ ,fj/ Mid e
Mo | *
M, BVECTEND W
B2 o \,\ I &;3{3&
" i ﬁ'\‘ﬁ e FLESE
G BEGHAS SN TR o
v EROMVCE .. YES ZOER PONY = FINDWL
ol S HOLETTE e TR ;sE” mm«a CTION
\,’\~ f*'/ «;5@3 _ﬁ/“’“’ \,,\r‘\%
1585, N o N
; T S IDDM POINT TN
CONTINUE TRAVERSAL ON o OTHERWISE
UNOUCLUDED SIDE[OF T LOGLUDED e
TRAVERBAL'S OB POINTS S, FRORVGET 7
A \\ /‘“‘/‘.
; . e
RESTRICT SEGS ITERSECTED BY e
TRAVERSALS 0B POINTS e, ¥ E&”
N 5 a3 ALD f*sam BOINT TO
o e NTERSECTED BEGAS
e, - OCCLUBION BOUNDARY (05}
YES o7 UN-PROCESSED \\‘x,\% v BUUNT
e SEG5 N 20 e
S, TRAVERSHLY
}%ﬁ'ﬁwa \’\\.«.\'_u \,-\.«-f/f

FHZ 15

U.S. Patent Oct. 27, 2015

Sheet 46 of 137

US 9,171,396 B2

.-jﬂ’”ﬂw Nu"’*"‘t'ﬁ--»..,b
LT o . . . o, Ry
YES T REDGEISRE. . NO
''''''''''''''''''''''''' o . o P
S METYPE?
\:."”w._, i
., o

¥

FURM SHAFY BETWEERN
Z00M PONTRVOE

o o e,
s e

[

"\,,\
o,
- ., -
b "

7 UNTRAVERSED . YES
TRUSEG N ~

.”""'

s
o

2DIM_POINT 18 OTHERWISE
OCCLUDED FROM VOE

< P
20N _POINTVCE 4
BHAFT?

".\' R
o
e

., »
e, s
"
e
-?/:’f

o,
.
\‘w .-‘"/
N ™
i»

"
LiGTs FRONTPROJECTION

SUMP 20 TRAVERBAL 1O
CLOSER UNTRAVERBED
TRIGBEGS M SHAFY

WEDGE LINED (WLSHIN SHAFY

EA
N

o v
e

v

e,

o,

k3

WBL-INTERSELT WLWIOH

T IBWLINUST M ves
HIGHER: o

iyt
ORBER?

.
",
o -
s S
.-*""/.
i Pt

.%""zﬁ" A
NG

GTHER WLS THAT ARE IN

1858

o,

.-"'v,‘-
-
e
e

o

208 PONY

o e,
= S,
"\"“«.« A_,-y-»“

w._ OCCLUDED? .

o
i, —

o, l.ﬁ_’_‘,.g.n'
vES

i PURYOUNTESY USING FIRET-ORDER
iy

W 1847
i, L%\Jw{ t:?s;?p? ¢ s
S, e

i
e

—
g
YES |

CONDUCT MODIFIED POINTIR

o e

WLS AND HIGHER-ORDER UBLS N
200 POINTYOE 20 8HAFT

G

RETURN NO

e,

e

- M\Ef‘é{} 3

Prtomnpi

RETURN YES
i 168

U.S. Patent

— wa'._,.."»

Oct. 27, 2015

Sheet 47 of 137

US 9,171,396 B2

{ S‘ff&ﬁ? P

?mﬁ}&% M:}&;? PR;:-EC*&.‘ HOR-
LROOOLUDED, NWM&% %fh
CUCLUDING MERHER I

SEED MESH USING RAY CASTING

WY CONTAINMENT POINTEON

q 4

FROMVERTEX 20 MESH TRAVEREAML
STARTING WITH SEED SEG

VERTERVUE SHAFY

e T

YES " ANY EXISTING SUSPENDED ., _O
e SDMESH TRAVERSALS? e
?;.‘3{“ o ﬁ.«-"'é\’\‘w\x
ﬂ.;- A M\ T,
NGO T RNESEGIN e
e BEGWERTEX "
T BHAFTT 7 o
S FROMYERTEX 20
ves | BACKPROECTION
e VISIBILITY AP COMPLETE

/;/

,

.5[.

UNTRAVERSED

BBIOE ANY

S BT ONBES

:.:::; SEG B SEG. :;»;.. ...
e VERTEX SHAFT? o7 1740
”'\,._ f»"f .
"‘*««.Wf JLMP TRAVERSAL TO
o CLOBER UNTRAVERSED
P REGE N EHART

POLYLINE f&s
AGGREGATE

UMBRAE
{PLALY

N /

e

- &tﬂéﬁﬁ 5

™

DO HOT REIITIATE
TRAVERSAL

?; ?5 5

¥

CONSTRULT CONTA IMENT

PUENTS Ob 0NN
HEGH BEOS

TRAVS

RENITIRTE
ENSAL

FIG. 17

U.S. Patent

Oct. 27, 2015

Sheet 48 of 137 US 9,171

ENCOUNTER UNTRAVERSED BEG

CEIRDY g

HEXT
UNTRAVERSED

o, .:'
o
i

e
"

"

1905~
et

,396 B2

SUSPEND & JUMP TRAVERSAL “i?
CLOBER, UNTRAVERSED 8RG8
SHAFT

¥ES

A7 UNTRAVERSED ™ e
TR T Taomsen e INTERRUPT TRAVERSAL AT
T VERTEXSHAFT? 7 * DOOLUSION OR CONTAINMENT
- ™~ o, o - g i}?‘é:}e{%R {
"4‘, ¢ M“-. fa _‘/»Vf
RS S . X,
R - 1835 .~ PPN
NGy (81

;-;"/

T -

) d SEGOONTANG
FROMVERTEYR
COGLUSION OR
CEMTARMENT
BOUMDARY
VERTER?

CONSTRULT
3;%%??2{.? ECTION WEDGE
LINE (BYWL} ON BILHOUETTE

VERTEX

I

BADKPRIECTION
GUCLUSION BOURARY (BOBY
PLNT = F00 FROMVERTER-

N P el YER YVISIBLE BWLBEG
.e«i.*: SHHOUETTE s INTERSECTION POINT USING
T, YERTEXY o BAY CASTHG OF BWL
'vv\%.\ o ,,;,n*" - .{3 g%%
v:(b"‘t-‘;';..”‘__ . o™ fRE e
T "y

REDETIATE TRAVERSAL ON
UNGCCLUDED SIDER OF
TRAVERSAL'S BOS POINTS

*

RESTRICY BEGS INTERSECTED BY

TRAVERSALS BOB PUINTE

';63:3 e -~ ’\:\’_.
.'-;"“Iv " ‘c\'»..,
o .» = o -
o s ,~
NG o UNFRODESSED .
= 3
e SEGSIN 2D 2
T, TRAVERSAL o
a g iy e, e e
o
o, o

FIG. 18

U.S. Patent Oct.

.,.w«.-..,w\\-.,“_r

27,2015 Sheet 49 of 137

US 9,171,396 B2

ES”?&?%? =

SELECT BEED TRIANGLE IN SEED MESH

I

ke

STARTING WITH SEED TRIANGLE

FROMAIEWOELL 30 MESH TRAVERSAL |

”,_é s
M“‘“"N
erini
R

YES T ANY EXISTING SUSPEN DED e _
e MESHTRAVERSALSY
NN"N'”“'M.NW: e e
_.w'””.w Na\“’w
NO Aﬁé? TRENTRE ™

T VOBHAFTY e

) ""-»-w.,\. . ﬁ.ﬁ.,..-'?”'\ ,/'»"”'" g ggﬁ

- - K A

.agi‘ o ”’{e.

§§3§ - fﬁ,,» \f.s.w.%{ .
o : T, . §END je
T UNTRAVERSED e gpe
g{\% TRE TRV :”:}ﬁ‘”
Ry BHAFT? fﬁ,.w’r PR Ly
e NP TRAVERSAL TO

CLOSER UNTHAVERSED
THID IN SHAFY

X

o,

’ﬁ?\iﬁ%

'-«.,,,-.-f

,,

N
S PTNTRI \
NSIDE ANY s

POLYHEDRAL

AGGREGATE

UMBRAE (FAU? 7

RENITIATE
TRAVERSAL

DONOT BEINITIATE
TRAVERBAL

wis,,\
? %%5{} 3

PN
(o

R

.18

U.S. Patent Oct. 27, 2015 Sheet 50 of 137 US 9,171,396 B2

T

ENCOHUNTER NON-BPETIRL UNTRAVERSED TRIANGLE (TR M??ﬁﬁf}wﬁ@«

k4

1 SEG

e

NEXT » HGee” SUSPEND & JUMP TRAVERSAL 10
WRANGE T SHAFT
T GHA |
N -+ WEDGES DN SLHOUETTE
RN ENGE & ADD YO WEDGE_LIST
- H PO AT e, W St 4 8
o~ FROMNC ' % ° a

r¥ UNTRAVERSED | A B e GLOSER, UNTRAVERSED TRIS IN
| T ONTRAVERSED ™, YES
x CONSTRUCT PRIMARY
e .

S gaLuson o0 PROCESS WEDGES

f,,\;" 0N MM (_,) o fototabgibidnnden P
~ BOURDRRY (CBY? .~ WEDGE LT
", J e oY

N DM_SEGS = FIND ON-WEDGE
HET T VISIBLE SEGS OF WEDGE-

,_.;/-» N \’.'*'-.4 .,3 g 5 & s-:, ,'f“':,' E .}?' o
o S NESH 1 SELTIONG

A - s, \3.‘? 5 ¥
-x;\\\\\\{ ! S;g £y TE '::;\\N\N s o s 3 g s
MR T ase. | CONSTRUCT SECONDARY
., EHCET L | WEDGESAT CSVE BY SWEEP
P L S ADD TOWEDGE LIST
ot . R
CONTRUE TRAVERGAL (N i, A

UNOCCLUDED SIDE(S) OF T
TRAVERSALS OB POLYLINES o7 BEMSEG -y
OTHERMSE
OUCLLDED o
T, EROMVC? 7
RETRIANGULATE TRIS INTERSECTED RN 7

BY TRAVERSAL'S (OB} FOLYLINER 4

&

£'Y
3

(-\:,\f\ /&,.»
. YES T

Mo Tanas AR DM_SEG TOINTERSERTED
vig .~ USPROCESSED ™ :

I ,\f;“ THES W ‘::Mm% 2&@&_.,«.,_,\ ‘#i_; r%h
o, R O ey Y e o,
\.\""’w\ TR«’G-}J Eg&ﬁ&i"} ,w"'! % g{gg el \Au":"w ﬁa"}
T I e - s”fﬂ.}&(ﬂ ifn e
> \”'-.-\: J,/»"‘ V\""\'-.,N Eé?%gf%’ ¢ y _’un""”
S, "

o

FiG. 20AT e

U.S. Patent Oct. 27, 2015 Sheet 51 of 137 US 9,171,396 B2

(RN,

{START 3

;M
ERCOUNTER SIMPLE NSIDEC

ORNER SHLHOUETTE

DETERMINE DIFF ANGLE » ANGLE BETWEEN LINE FORMED
BY INTERSECTION OF ADJACENT SVAW WEDGE PLANES &
ERGES OF SRV WEDGE FORMING SMALLEST ANGLE

YATH THIS LINE

o ‘a,
S,
ot

2

TR ANGLE »

VALUEY

9

EMPLOY METHOD OF
INTERSECTING THE PLANES OF
ADJACENT SV-MW WEDGES TO

FORM CONTINUOUS,
CONSERVATIVE UMBRAL EVENT

SURFACE
E
)

SRR

FG.

o
o
=
-

s

o

e

&

EMPLOY SWEEP NETHOD TO
CONSTRUCT SE-MY WEDGES ON
INSIDE CORNER SILHOUETTE

YERTEX

¢”‘:¥"‘\

K
-

208

U.S. Patent Oct. 27, 2015 Sheet 52 of 137 US 9,171,396 B2

REPLACEMENT SHEET

VIEWCELL
i

i

MESH-A

YiEWCELL

FIG. 20D

U.S. Patent Oct. 27, 2015 Sheet 53 of 137 US 9,171,396 B2

VIEWCELL

VIEWCELL

MESHB

FIG. 20F

U.S. Patent Oct. 27, 2015 Sheet 54 of 137 US 9,171,396 B2

SW

YIEWCELL
/

7

VIEWCELL

FIG. 20H

U.S. Patent Oct. 27, 2015 Sheet 55 of 137 US 9,171,396 B2

SV

VIEWCELL |\ MESHA

MESH-B

VIEWCELL

FIG. 204

U.S. Patent Oct. 27, 2015 Sheet 56 of 137 US 9,171,396 B2

U.S. Patent Sheet 57 of 137 US 9,171,396 B2

Oct. 27, 2015

P SUSPEND & JUMP
o7 NTRIVERSED ™ YES | RaveRSALTO CLOSER,
S TRNOMSEG 7Tl UNTRAVERSED TRIS I
e DM_SEGVC SHAFT
pk . oy 2t

E?&iﬁ?‘

i

§¥\£’§'§§§8EC’§' {}:’%’%,,8&*3 & QTHER
o SHAFT

bl _SUBSEGS) =
WEDGES IN

4 2§ o M,.M.-Vm-”‘"\ MYWMM‘*—,-.
. S DM_SUBSEG COMMECTED ™ .
NO TE OW_SUBSEDT THAT HAS e YES
S ALREADY HAD GUOLUSION
e BIATUBDETERMINED?
NVA"'\-\.%%,;*"'IV-‘/‘ e 5 £
« CERE L OCLUSION STATUS OF DM _BEG
SELECT POINT ON M. SUBSEG = QCOLUBION BTATUS OF
2G| NEIGHEORING DM SEG
FORM SHAFT SETEEN POINT O 17
D SUBSEG AND VIEWCELL
PLISTIDENTIFY WEDGES I
BHAFT 3148
2445 o ??’T’s?%?«?%?%_%‘i%‘???‘%??_%?‘%_?‘%‘?:%f _______

o i """\N. e e, e . o
I WLBTEMPTY? e e
T MO ISWEDGE T
o oy e e
?E S ; u <.;.:.:.:.:-:-:-:¢::J)\ i“ﬁ {;i’fg‘ ga f.»}‘
. mn o ping o
20 l . URDER? .
: e, -
., e

CONBUCT MODIFIED POINTIR
POLYHEDRON TEST USING FIRBT.
DRDER WEDGES AND HIGHER-ORDER
UBPS N POINT-VIEWCELL BHAFT

‘f‘gs” 2155
BB ERBEC T WEDGE Wi
OTHER WEDGES/UBPS THATARE

|

L BEE FIG. 2B
o
{211}

'\._ ___,-/

N BOTH WEDGE VT SHAFT &
POINT-VIEWCELL BHAFT

FIG. 214

U.S. Patent Oct. 27, 2015 Sheet 58 of 137 US 9,171,396 B2

{314 FROM FIG. 21A
N

2',@&«’ M##_.:M.w' NV”"‘"%.,,M
o POINT e NO o
T OCOLUDED? -

-~ e RETURN
Y.l DM_SEG NOT
RETURN OUCLUDED
DM _SEG A

DOGLUDED (Enp)
NER
X

Fity. 218 \i%fi’?ﬁ?

i
""‘*v

YEST

TN el RGO LABEL

-.'/"W; EE Ta b . *f”ix,,u’ «%.2 fgg.‘;

‘_“,f'f ?R% %y’é E’;"gﬂ %3 ﬁ"“c* - :
o STRONGLY S YES P ARUEL TRIANGLE A% NO Z
S VISIBLE FROM o~) CUMPARE™ N PVR

N YOI -

o

e
s
e

" - ’) .

"'w\ f..f e /,/f \‘”\.ﬁ.\v‘] 8 5
“’E‘? g? *g gﬁ{} y J“ | N \“_"

— o7 TREBNVIES ™

RS

R TRANGLE A WO TWRITE N YES T nOTINSHAFT

PYS T OFANYOTHER 7
S TR

i ",
] Ef*%ﬁ M Ot NOT LABEL
o S ';A,..,:»»--w-f}‘ ?%

s g,
o

o
i e
e

oY
W |
g ,-':" = u%::{-.g gg

LABLE ???ﬁ?&f‘%ﬁigﬁ%ﬁ “f‘ii?f BACKFACE
"o INTERSECTYC? e UL INEYS
S, «»"M iﬂ g?ﬁﬁ / o B YRY

g,
w,’fw

4

v S
o PLANE OF TRUN ™ ygg
<. YN DOES NOT

e

"-‘-.». e

FG 210

U.S. Patent

Oct. 27, 2015

Sheet 59 of 137

SELECY SEED MESH FROM

FRONTPRIECTION
UNOGOLUDED MESHES N

COMNGTRUCT CONTAINMENT SEGBON
SEED MESH USING 20 MESH TRAVERSAL

SHEAG BHAFT

ON SHAFT BOUNDARY WEDGES N

¥

FROMEDGE 30 KMESH TRAVERBAL

US 9,171,396 B2

STARTING WITH SEED TRIANGLE

b

5 e ANY EXISTING
3 MESH TRAVERSALS?

e

SURPENDED

Ry e
w""m\-.,._«“ . et
"':'~'-»._..4_.“_'%#.,,.w.~"‘:”
~ 5 4
B, e,
[T,
o i e a o . ..N"“‘s
....... NO o Sy TRETRE e
T, ShE BHAFTY e
e, e Iy, g
o,] L 2}{4‘ 25
P o A F
o 3 H

o

TR TRESHE

BETINTRE N
INBIE AR
POLYHEDRAL
N AGGREGATE
-, UNBRAE (PAUR 7
BN /‘.m

7 UNTRAYERSED

«,,%_% SHAFT? - e

BACKPROESTION
VISIBILITY MAP COMBLETE

N,
s

‘('! % o "‘.':.
»{ END }

~,
e

.%'"'*\.,\ YES
J"WW
g e
JHAP TRAVERSALTQ
CLOSER UNTRAVERSED
TRIS I BHAFT

& :

UG,

%

CONSTRUCY DONTAINRENT
BEGE ON CONNECTER

e

P

FIP
\EHD

S wv"/‘

&

DONOTREMNTITE L Eup
TRAVERSAL S’
RENITIATE W

» BN
TRAVERBAL S

AESH TRES

FIG. 22

U.S. Patent Oct. 27, 2015 Sheet 60 of 137 US 9,171,396 B2

ENGOUNTER UNTRAVERRED ?PE:A?%C«&E o

P UNTRAVERSED | A _,,.......».w,:afgzﬁ > ﬁam NTRAVERSED TR
TRIBNGLE ¢ /,,,«-“’ L SHAFT
T nnaversEn N YES O
CEEL T Gmwtmsie S STOR TRAVERSAL AT CUOLUSION
N Y R CONTAINMENT BOUNDARY

i
tad
S
555

rd
¥

o0 TRICOMTAING ™
?‘/“/ rﬁﬁ%b”&ﬁ "

-;\ & H
‘,}"' 2% -M-*
-~ o PROCESR ‘s’iéﬁi}i.;ﬁ‘:;
S tfiz;ﬁ;i - WEDGE LIST
o L £Y 7 v
\"‘\,}_ ‘ ..«'""e

G

=

DM _SEGS = FIND (N ‘@5{}@5
VIBIBLE SEGS OF WEDGE.
MESH TRENTERSECTIONS

- s o ¥

ety S iﬁi}iﬁﬁf’?ﬁ et 1 FIND DGYVE § DONSTRUCT

T EDGE? 7 4 BECONDARY WEDGES § ADD

e e A T WEDGE LIST

; . .
RERNTHTE TRAVERSAL ON B, .
UNOCCLUDED 3IDESIO A momsEs

THAVERRALS ua POLYLINES OTHERWISE NG

.. < SCCLUDED ‘f,«
. FROMSHEY 7

RETRIANGULATE TRIS INTERSECTED N
BY TRAVERSALS (OB)POLINES | .. oy

7
S,

g
331
e

yeg o UNPROCESSED .
Mt TRIS M
e TRAVERSAL?

. e . N, 5
WEDGE Lgr T N
EMPTY? o

—~—

e
. -~
i, o,

U.S. Patent Oct. 27, 2015

Sheet 61 of 137

i .. 4 é?ﬁﬂﬂ
i}‘é 3 i.‘:% y /;‘f-‘/-'/“’“\’\h\.f.w“‘*
e ""v*-.“..
, N TRAVERSED ~ FES 1y m&;@iﬁ%ﬁ éi?ﬁa
< TREIN D8 SEG- w ------ AU ERRTS TR B
ol EHE sm»w o UNTRAVERSED TRIS I
R B_SEGVO SHAFY
AR, 5‘,@.@ o ‘,,,.i;w\ 2415
* (ENo)

[h BUBSEGS =

INTERSECT DM _SEG 4 UTHER
WEDGES i S’f&% %W&fﬂ, BHAFT

718 DM_SUBSES

CONMECTED

US 9,171,396 B2

WO 7O Dil_SUBSEG THAT HAS L YES
i T e PN
COCLUSION STATUS OF DM _SEG
SELECT PONT ON DM_SURSES = QUCLLSION STATUS OF
¥ R NEIGHECRING DM SEG
O SHART BETEEN FANT NS kN
i:‘s?f;ji.zfss&fiﬁ AND SHLE a&za ‘
WK Ny
| i 4R
2445 - o PROCESS WEDGES I WLIST
2458 MO 1
» %_‘.w«'@“‘" u ww“""mﬂ,%m . /‘.f""ﬁ‘/ \4"’"‘\,)_’ \«M?‘%E‘ﬁ
s ::v . *s;‘??ﬁ»b? Eggsgg}‘g"v"z ww”;,m,@ ‘/\w’“’ o “;?\%
s Moo o IBWEDGE T
VES HIGHER- s
248, S ORDER?

CONDUCT MODIFIED POINTIN
POLYHEDRON TEST LISING FIRGY
CROER WEDGES AND HIGHER-ORDER

UBPS IN POINTVIEWCOELL SHAFY

(BRI
THER wgz}ﬁ&mm THAT m&

i«&:& FIG. 248

§ .-;.‘:““lg i

\’W..‘._.-f

INBUOTHWEDGE BLE SHAFT &
POINT.GLE SMAFY

FiGG 244

U.S. Patent Oct. 27, 2015 Sheet 62 of 137 US 9,171,396 B2

gt Y EROM FIG. 244

!
e

o \Nh':""‘m. ST
PUSNT e, MU

ot

i N .."%A:\hw' {}ﬁ} ;°'< L g‘/ 3% g;ﬁ ./..uﬂ..,#‘"'“:,v, - ‘@' ..
4, RETURN
VEST L, O TET s seG o

BETHRN GUCLUDED

it
e

Uh_BEG Mi’f

DELIUDED (0
VN :‘é"“‘. A
>' i:?*ii} §

FiG. 248

{START

P e BB

//.ﬁ"' u \“»-.._,E: L ﬁﬁg&‘

- ggij’%ﬁj‘égm ., YES CORNECHNE S
o, Rk e OO G S SRR VRAS
Nl WEDGES=SWEEP BETWEEN VSWS

e o X

S e N

g i, i:f*é,}

m:i .

N

N 2

/| ONEVSVEC ™\ |
CONTANED ™ YES O N

ey

WITHIN e B R s &

. W e RO RUROS e
ANOTHERON /" = o CONEXT
\%ﬁ{)’%g Y ;;ﬁ{)ﬁ’?/ '""“«a,,%“% > e

“, - P

4G e " CONNECTING BE Msf WEDGE=SWEER
o WG SEGMENT { ﬁi’if*ﬁ? TG YEWVE

pmmmg '*z::smfﬁ:«; SIMPLIFICATION |
OF YRVERDY ‘””’”““»

c-"‘;'/

FIG. 240

U.S. Patent

i «».._.

{3‘*

.

-
e

f%?%* e

Oct. 27, 2015 Sheet 63 of 137

US 9,171,396 B2

AND POINT ON VIEWCELL BURFACE

LS = LINE SEGMENT BETWEEN TESGTPOINT TR

¥

HTERSECT LE AND OTHER MESH TRIANGLES,
FIGHER-OROER UBPS, & FIRST-ORUER WeDGES

¥

FROM POINT ON VEWCELL

PROCESS ALL INTERSECTION POINTS STARTING

¥

-:'" \",

LN ..-f’

Al
i 1

f!.-.-"':ff “u, .\1‘\‘\ .,.,23’2 5
7 iNTERSEC 1D “ YES | apris QTATE
+ .’ EfR TiNE IR) :;a. - ?C ’LU{}Q@ k
M. MESHTRD -
S o ,wé e 3R
e ezssz;)
- o %a BCTED ™ ,
ﬁ;@ﬁgmﬁ@ga ~S'5‘R%§i URE %f%’%" FIRST-ORDER
2’ - "‘éﬁv“f-. ;V«Mﬂ ‘M«N""'m
.................. T RTERBECY T e PHERBECT T
o, SIDEY e T WHICHBIOEY
«x,.“’_“ . ‘/ﬂ_,,-'" . o P
UNOCCLUDED ™" (CCLUDED UNCODLUDER ™7 GLCLUDED
SETLS STATE S SRR
w i"\' YEF {!,; B ~ E e : o
og Cziiﬁw NIRRT Tlssmie
&%*5{; & osg P wm SBER
M BET LS STATE = e
5 L SIALE ¥ T CURRENT LS T
¥ f’ " :A{; |) SN - :: :,3*
UNOC émﬂ} - STaTE
FEA o ﬁ'\) \N‘”"'-».. .‘«*‘Mﬁw
x\wfm LUNGCCLUDED T DCCLUGED

-'&\sﬁ;

i
DO NOT
CHANGE L&
STATE

PG 28

M,‘

(END Yo

"w-.a.

ey
e '-‘-V

R

2585 .,

z&’*é{} e

A

SET LS STATE =
UNCOCLUDED

U.S. Patent Oct. 27, 2015 Sheet

64 of 137

ENCOUNTER NORINITIAL UNTRAVERSED %’Hﬁt‘%{ﬁw TR +‘«\

SUSREND 8 jup ??iﬁfs:‘hf'?‘\f& W

NEXT * 2805~
™ UNTRAVERSED , o380 P CLOBER, UNTRAVERSED TRIS I
Ll TRIANGLE ‘ SHAFT
< -x STOR TRAVERSAL AT 0B SEG
{2647 \ e R e,
NI e (281 2545
o P CONSTRUCT PRIMARY
AT . - WEDGES ON SLHOUETTE
e | EDGE & ADD T0 WEDGE LIST
N,,f' ‘ :rgg e
o :
S N PROCESS WEBGES I
g%“{’"‘ ¢ o8y WEDGE LIST
\,,_ e
R k §
NOY
_— L B SEGE = FIND ON-WEDGE
T T VISIBLE SEGS OF WEDBE.
S MESH TR NTERSECTIONS
MO ‘ TRIHAR R ”
s MU IRTY sssnsnsananans ATEN OT €) .
T T T aae. | CONSTRUCT SECONDARY
S T T WEDGES AT CSVS BY SWEEP
5. S sg61 - § ADD TO WEDGE_LIST
; il §
CONTINUE TRAVERSAL O “IUEPNTERSECTION OF WEDGE
UNDCCLUBED SIDES) OF WITH OTHER WEDGESLIBRS
TRAVERSALS OB POLYLINES | 7
) B .: o PR —_
et GO BEG A T MO
RETRIANGULATE TRIS INTERSECTED G o o }Sfﬁ -
BY TRAVERSAL'S u&é; POLYLINES SR, ,{EQ““
| *‘%{3 SR ADD Di_SEG TOINTERSECTED
YES TRIAS OB _SEG
M TR W R e N
", . .?.& Kgﬁﬁ&ﬁt‘? /_',‘/""\ g e 'I,j-’“'wn . J\\m\\‘.
e P o ES o wepseust N0
2680 S e BMETYE

US 9,171,396 B2

U.S. Patent Oct. 27, 2015 Sheet 65 of 137 US 9,171,396 B2

>
[
o
2
=<
=
A}
3
fan]
(]
=z
Iy 4 e
o . <3
[L -
/ Ty [
75 2

FIG. 27A

Syv2

el

VIEWCH

U.S. Patent Oct. 27, 2015 Sheet 66 of 137 US 9,171,396 B2

—
=
o "‘Tj
LR
g <«
=
7
—
L
=
=
i
= 5
2 <%
Mo ><
= Led
<t
— &
b .
= iy =
< &2 =
Qe 3. -
>
<L
o
Lid
)

MESHD

ws

FIG. 278

SW2
A
L

US 9,171,396 B2

Sheet 67 of 137

Oct. 27, 2015

U.S. Patent

QL¢ Ol

TIHIMIA

Ial

LOVKEVE003M

SO T PN M
y NGNS
4 AR
e EARSA
IS

{38

13
32

U.S. Patent Oct. 27, 2015 Sheet 68 of 137 US 9,171,396 B2

EXACT

WEDGES-

FIG. 27D

SYVZ

YIEWCELL

U.S. Patent Oct. 27, 2015

e

£ 3%?‘%’ }

%"

Sheet 69 of 137

EDGE » FIRST-ORDER MESH SILHOUETTE EDGE

¥

DETERMNE 8P = SUPPORTING POLYGON

S 2040 B2

e

v*"‘ ANGLE BETWEEN 58 ™.

US 9,171,396 B2

"”i.f:% AND SEPARSTING ‘,
M., PLANE WAL T
d \ %ﬂm&y‘"‘w o o
PHYE e, ff/.s/ x"‘\,\ GG o, | -
*"I ? o : : ‘
AN TREATSV-ME WEDGE A5 EXALT
o BRINTERSECTS ™ 1
< MESH e P
. Polysons o MO ; §F€Eﬁ
™, e
e " SVMEWEDGE IS EXACT

vesY

.Li'{v

SEG_LIST-DETERMINE SEGHENTS OF EDGE OCCLUDED FROM
SV USING 2D FROM-POINT OR FROM-SEG MESH TRAVERSAL

35?@{}3

»,., “.«

NEXT BEGMENT M
3&6»,&%3?

- SR

R

m

SET BEGMENT AS U ﬁi:ﬁ\%x LIGHT SOURCE

i?@i*é STRUCT FROM-SEGMENRY, O
VIEWCELL VI BY BACKPROJECTION

DETERMINE VBYSC FROW

BACKPROIECTION VI

i

DETERMINE VEYY FROMVEVED

CONSTRUCT ADUUSTED 5V-ME WEDRE

O GEGMENT USING WEBW

FiG. 28

U.S. Patent Oct. 27, 2015 Sheet 70 of 137 US 9,171,396 B2

s

\gm ‘;}
%-

ENCOUNTER
SIMPLE INBIDE DORNER BILHODUETTE VERTEX OR OBV

;‘ T
DETERMINE §T = SWEPT TRIANGLE

N 951 e
R NGLE BETWEEN 5T e

=

< AND SEPARATING s
T PLANER WAL e

S, e

3 . o
e i, e
. o, v
‘r ey e

W '&"w_. g

o R N 814 T
o 4t N - TREATSE-MY WEDGEAB EXACY

o -
o7 NEERSECTE N e
”\,,* MESH fv"}‘g{} f\ M:,},)

:\’\, 9{3{\{@(}%8 ‘/3/‘\
N e o SE-MY WEDGE IS EXADT
\"\4\,(5%“‘/ ¥ i
YES § P, g

i gm

CONSTRUCT OR LISE EXISTING BACKPROECTION VM
GENERATE E} FROMEACH SEHQUETTE EDGE ADNACENT TR
GSIDE GURNER SHHQUETTE VERTEX R

:

DETERMINE YBVEC FROM EACH
BACKPROJECTION VM

CONVER SINPURICATION OF WVEC
SEGMENTS CONKEUTING BW ORVEWS 1y

&L ?m?RiJ ? %E‘ M%"f"m?}{é?ﬁ% ﬁ}?’é K«ia f}E

W F ?* ?*4" ‘*x*wf‘siS

Fi3. 29

U.S.

Sheet 71 of 137

Patent Oct. 27, 2015

US 9,171,396 B2

CERETY

¥

ENCCOUNTER OUOLUDED REGION (DR} OF FROMAYC VY

¥

DETERMINE NUMBER AND IAGE-SPACE AREA IS OF
AL MESH TRIANGLES IN QUCLUDED REGION

DR
¥

UNQUCLUDED REGION OF VM BY OR BOUNDARY

DETERMINE NUMBER OF ADCHTIONAL TRIANGLES PRODUCED

¥

DETERMINE EFFRECTIVE STATIC QOCLLBION (B
OF QUCLUDED TRIANGLES, IBA OF QX

TMUMBER OF ADDITONAL TRIANGLES PRODUCED

i FINUMBER
CLUBED TRIANGLES,

REMOVE CCOLLISION
REGION & RESTORE

CRIGINAL MESH
TRIANGL E’;z

KEEP i"{‘f‘i LSION
REGION

M B e
oo
R
"%{}z‘% . L e "“"’w\\
.,' = \"'»..
- i S e k) %’""\,_‘9
#ADDITIONAL M KD
_._t.«' . . a e “
TRIANGLES = P
", e - .
N YALUEZ? -~
'\"-.,,.’ s
.‘.‘:\{ = o
N, e
"v,:::: e
YES
¥

s
{Enp

oo

omen, E@ﬁ 8

BOURDARY TRIANGLES =TRIZ WTERGECTING OR BOUNDARY

]

TRIANGLE

REMOVE BOUNGARY TRANGLED FROM OR & ADUADENY
EXPOSED WA REGION AND REPLACE WITH ORIGINAL MEBH

T

¥

NEW BOUNDARY OF OR = BOUNDARY OF TRIANGLES
AQJACENT TG BOUNDARY TRIANGLER

KEEP DCCLUSION
REGION

f"fﬁf \k’,\"\c\ - v%ge
7 M d
L NUMBER BORSA e ves
<. OF BOCLUDED Pt
. TRISSEVRLUE?
.\f.":‘\t\ ,«’" ,-/

/"”

{«?ﬁ*i§

*—-.u

SEE FiG. 38

b,

m@ GEE 16, 308
01)

o %,
‘w.v.w

FIG. 30A

u;é.,, :
y\gf‘s {}

- Wi

U.S. Patent

Oct. 27,2015 Sheet 72 of 137

£9

SEE FI3 308

T wmEor N
TRIANGLE YES
T BUBDRASICGNIN e
S OR»VALUER 7
T, o
\\,\.}\ /4‘/«"'.&
3026

N | A
SUBDIVIDE TRIANGLES I OR

US 9,171,396 B2

¢

S LISY = ORUERED SHSEGE PORMNG (DR} BOUNDARY

0E8

¥

SH-CGELECT BHTIALEDGE N SIL_UISY

REXT B = NEXT ADJADENT SEG
I SHL_LIST

1

CUTSIDE CONVEY
CORNERY

S B 3
N v . o
- FIGs. 308 o e

U.S. Patent Oct. 27, 2015 Sheet 73 of 137 US 9,171,396 B2

i, o
% Jts 2

Foue & ,\"‘. ™ .{\:
{304} LB
e M

0B SEEFIG.205

s - Py
e s

VV S L i %Y = b\«% RECOMPUTE OB USING WERGE

TE . R, CONKECTING NON-SHAREDR
N T VERTICES OF SIL A NEXT_SL
’4 ?}3? o J\:\“’\,\t n-'*"" i

BESTSDE = BESTSIOE = DETERMINE D_ESO = B8 OF
WEDE QUTSIDE REGION BETWEEN CRIGINGL AND
* NEW DR
IDENTIFY TWO S EDGES 0N BOTH g
SDES OF SLORGILNEXTTHAT | 2048 o e 3042
FORMWEDGE PLANES WHiH 1/ T g

INTERSECT BESTSE OF CONTOUR | < s
e VALLIES e

DETERMINED ESO=ESOOF | 30507 ygg

REGHON BETWEEN DRIGINAL AND B ——
NEVH BOLNDARY SAVE RECOMPUTED,

CONSERWRTIVE OB

o e BT H

M e
"""'"""{:«.. .\'.\::_.,

MN‘”‘*»\ ifbﬁLﬁﬁ'ﬁ;" Jw’_,,,.hf»- SAVE P?w{xﬂﬁﬁﬁiﬁ ATED VR

3000

wf’f»‘&E il
SAVE RECOMPLTED SET CORRESPORDING
DICE R AR £ AN CONTOUR NODE, SPAK Y PEx]
CONSERVATVE QR AND R il
RE?Q&& {’;ﬁ if ;‘{'Eéj; ?M AN ADHEY 3?@3{«&\3‘5’\?

e
SET CORRESPONDING ;
mﬁ&?xmﬁ F‘i ﬁ?‘ 8?‘%&?‘% '5'*{ ?“F =L KEER

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ., Y

REEP
CRIGIAL OB

4

SHNEXT RibaN

U.S. Patent Oct. 27, 2015 Sheet 74 of 137 US 9,171,396 B2

Vi

"FIG. 30D

[
vEwcEw, MESHG

FIG. 30k

U.S. Patent Oct. 27, 2015 Sheet 75 of 137 US 9,171,396 B2

shut fordow

% . .

e ety Hindae o magh
intedne: Hinde i adge ot mesh

irﬁ ’*am % \-{ indey & starding verte ol contonr
iredent i afs-‘ay o ﬁmmﬁcms

§f‘s§ st iff:af
i :ﬁ:&xtw;smiow;
oharaexd sdge B uathe pdos
otk a-::ﬁcs.«&

chugr confour_ipe ¢)

b
}. £

st Contoir Kol
rs

§
chaw node typafit=

ohar span_ s

rd spen s Y ¢ £
int iy H i ronds, f*.>§>zz~~~ -;5";&%‘2 sindi s index B “‘*(: o af?:w

#itrode_lypews2 hen riofols Index to 10 tnb aray

Y e tvpeesl then ninfods nde b OBV nfo arsy

suctVi kb

b

it ey i mex f(* m&a‘h *mta %ré‘-«a; ’}E 5’5%{% mr*’mm*{f;m; i@ ﬁmi s %«w%%iw eimmﬁn

o

in sus

Convty Modes ‘>f Contour should
Lot BY indioabes VA dynain :
foad poigldh F oy valueof inliah vass it s formud by 3{;?»;&3@%: M;h. B
3

ndatud ai *w%?sme g, ‘%w;:ﬁ
SEREING
32@: QE BEG

G 31A

U.S. Patent Oct. 27, 2015 Sheet 76 of 137 US 9,171,396 B2

shuct 0 ndo

?:é

ohar b byper Hloph »;:faai}‘sw ?ﬁm*; %ﬁv&%fs by plvot and sweep
sionall pos anant SU-MES

toplonsl %«m{g f{}s* speaifs viewes! etiges forming SVBC

char SVECIAY
5

shuct GV _Indo
{

ot ety

int addye
ohir i v

{opSonal) index fo mesh rﬁﬁ'faéﬁ‘szg interssvied sdne
i {oplion: ‘;ss‘gim ta) "**s‘gmmww
pi mai;‘»

char BUSCHE 4 @gm@ h%ﬁi& &:’e{ s;m*ze »&Wewi gﬁg;sss forming SVSE
doubde poinlf3l F (oplional) precomputed 2 veluss of varlex of O8Y

%

shricd ¥ cnedd f i
¥ o m&};i

sheuct Dlta Gpiussuboash_sttach polvling
pracomputed st of mesh sdges for allacting submash and wighel mesh
{
ntoontoun F relorenos o o soeoific Contow
char afiach lyper § i o= hee edges of wibmesh sltachad b hes sdges of mainmash
#it **é For edges of submeash stieched o listed adges of mplnmesh
free wdges of submesh inked to fee edges of manmesh
&8 sdges of submedh lned B lhed edoey of ninrnesh
i subimesty & o alfashing submesh
int :&iﬁ-gmumi}&@ uner csf sdges in the alaching poling
It subimesh_sdgslist # prdersd st of addges In submash which gitach
;:z tonginmesh adgelst # ordered el of stlgey i malnmush fo which sttaches

stmﬁ O Info § dormation by anoulside comer nade of

i
k3
ohr St # {oplonalt Ml By specifiic vieweel varlex torming UBP
kS

1S FIG. 3B

U.S. Patent Oct. 27, 2015 Sheet 77 of 137 US 9,171,396 B2

singgt Dedialplussabraash

§
H

i anglesount, 4 f?;aff*zﬁ&r a *#ea f“{; ag in
it verternount
i etigeanant;

m submash

i *r*arz; e # ey of Wenglscount rangles whish indexss vertes and sdgs arravs bulow
aevgy of warbroount wtices
s%m sddam, i greay of sddpeocount sdges

giruet Thangle
wfgkbal k¥
int vertenf3y
it edoellt
2

Nt

stk of 3 wertices in DeleGrlussubime shusrisg sy
ndew of 3 edges s Delalpligsuboesh edgep armsy

Shuct Exdge

B

vl
ey of Weo werlives in DollnGplussilirnpeh verloop avay

st verles
Lo
it ghebad i
ot polndl3l

)

f’ﬁ%’

2]
P

sirust Stering S Edge UBP intersecting_Mint

Mexh Mangle INTERBELTED ‘%“E%M%LLE

@*&3{ WTERSECTS N RUBLENGTH f o O Howber of sllscand wiangies Intersactad by UBP
1 < Nureber of adiavsnt UBPs Infsscting same angls

ey

st 38 Edge UBP intersetion Mind

i

amf INTERSECTION RUNLENGTH 43> 0 Number of adiaosnt angles inhriected by UBR
i< (Nussher of adincant UBPs Irdersenting sams ilangle

Rl

G e

U.S. Patent

shut e
v$
nivewesl sl
b visenat sk
Jﬁrmmﬁm faow
§ DAtk f’i *>§"§*
'ﬁf‘aﬁﬁt :

el

115 Hesdsr

Oct. 27, 2015

?ff{srﬁmn *4?8’95,.5‘ r;m&w ?53?’1"

Frapherof

Sheet 78 of 137 US 9,171,396 B2

vigwoel
s vt
»vigwosl s penairated

-ﬁ:’ @’;’ia s ¢§ wigh b%;* wzersw '*?e?t

v o sn ansy of Dallalplus meshes
dalaGplus sniclurag in siray

Thangle® tlanglep ¥ amay of Yongleoount anges which
& !y o verlescount verticss
swray of sdgscount edges

Vot varbog;
Eduge” sdigem

N
i

shsch Trinngle
i global i
et el

it ginbal_matedal i

3,
£

shsct verlex
{

iyt b il
foat poinddl
Hoat b #

%
N
&

globath

#ylohal i
de of 3 vottioes i DoltaGphus varbog gy
shox o 3 el i Dltatipl
secbe tox ayremy of maberial o

"
-l of weriest
texhare map waluss

incheass virte and e WAy bulow

Sdnenangy
sha shruschures:

v of bw verites in DelaBrlusubmash verexp aray

FiG. 310

U.S. Patent Oct. 27, 2015 Sheet 79 of 137

§
O OVERTEY = CONTOUR VERTEX
L EDGE » CONTOUREDGE, Wisl

US 9,171,396 B2

a

= CONTOUR NODE ARRAYNE

SoBOLE

e 30

/.w'-‘w\ 543 5 mmeleton S N e,
(320 o T s\m& ?éu&&,,'t"’

YES |
SEGI=E

SEE

Pz 328

,Q;:? on KEXY EDGE = MESH BDGE CONNECTED TOU VERTEX THAY
N 15 F k‘fz% QROER, FROMVIEWCELL 8 CHIUETTE EDGE

.-E-..'
S o,
2
o,
o,

e,

ME LigP

mg ; e
e 3321
™ €.
GENERATE VM SEGS
eat GORRERFONDING T B

e ¥

e SEGSEGH
. e '-».me\)
________ SR NODE, ., N
mpn o, RN B S0 L SV dv__,w
JBFS ONIC ¥ F‘%Ex e, SPAN LENGTHY .
P o

¥

1228,
1 GENERATE VM BEGE
T CORRESPONDING TOP
SE-MY UBRE
4232~

U.S. Patent Oct. 27, 2015 Sheet 80 of 137 US 9,171,396 B2

£ MESH = 08 INFGIU NQDENNFOIMESH

L EDGE = CBY_INFOIC_NODE MINFOLEDGE

CEY = WTERSECTION OF §_EDGE AND CURRENY UBP

& S Fer o408
............ gﬂjéﬂi i

{_VERTEX = NEXT VERTEX OF ©_EDGE AFTER CSV SEE FIG. 428 e

R

SEE PG HEA oy
ad T3y Y .l
38

ps v

et

FiG. 328

U.S. Patent Oct. 27, 2015 Sheet 81 of 137 US 9,171,396 B2

S e ONE VI COMPLETELY INSIEE |

T THEOTHERYC? e

e
e,

SO i N %+ 4 KEiE SOR—

GRIFIED VM REGIONS OF VESARE CONTIGUOUS
INTEREST (RO > REGIONS i

VISIBLE FROM LONTAINED VL UNIFIED VM REGIONS OF
INTEREST ARE %E* A

4 REGIONS [DRS) = VISIBLE
yagt | FROMYC A&NOT :5 OR
VISIBLE FROM x,.;s AND HOT

VA

o - s o
ves o | REGONGS) = o

o Wi 3 BLE FROM ™7
’\\“‘w.,', Y g jﬁ(& BT P -
S VOB
’\q\‘\» /?"ﬂ Jﬁf
KRS \%\m ,w*""f 33@ ki

CONSTRUCT VM FROM VIEWCELL =

UNIONIVE_AVE B)

CONSTRUDT OB SEGSFROM VG AR
7 OB SECYEFROMYGC B
v i :

U.S. Patent

Oct.

27,2015

Sheet 82 of 137

US 9,171,396 B2

TRAVERSE UNIFIED VM RESTRICTING AT
(B BEGSE
UNTRAVERBEDTRISIN e -
_TRAVERSAL S VM REGION? o
o T
TRET zm&a«w VIS 'z*sf @s: TRAVERSED
B3R é{
e e W
MO RAVERSED REGION IS
... REGION OF NTERESTY e
3334
e PN
., x.f \,
............................. H f/ SIMPLEY N
eroRe | MO REGHON YES |
gouNDAREs o
. %‘\t ’;} S“.._/'é“
] v-/"“"ﬂ . {.\"v, »
YES " UNTRAVERSED o - | R
S TRENWZ e
e BV ALUER ™
?“E{} .‘E‘ ¥ '} L r"‘ﬂd
SEE Big, o | END ' %‘&Es””“ o
i’;”'};ﬁ ’ ‘il\
N SEE Fi. 330 (332

FiG. 338

U.S. Patent Oct. 27, 2015 Sheet 83 of 137 US 9,171,396 B2

ot

{5‘.""‘

Mg

i
E

SEE FIG, 338 (a0 SEE FIG. 238

- 3355

SE=UETERMINE :‘?’G%ﬁ? Bk OF
DELTAGH OR DELTAG. DATA, OR

[

STORE DELYAG
CIATA DHRECTLY

DENTIFY OB _SEG FROMVC AL OB _BEG
FROM VD B & DORREGPONONG B

| CONTOURS FORMING RO QUTER BOUNDARY

.
;
St

¥

 SUBDIVIDE OR_REGH AT INTERRECTION POINTS

(PTASTORE NG 0’*@?’32&%“’3 Y BFD

3087

LABLE SLHOUETTEG {}%% TOURS A5 BOLNDING

ROEFOR AB TRANSITION § STORE WHITHIPS
MERTEX N MESH VMINFO,
DELTAGs ATTACH POLYLINE FORINTIAL VM
1B BEG

*..._;.._..gg.@?@

X

LENTIFY OB _BEG FROMYE AR QB _BEG
FROMYC B R CORREBPONDING 81
CONTOURS FORMING ROUNNER BOUNDARES

SUBDIVIDE OB _BEGS AT INTERBECTION POINTS |

1P & STORE B CONTOURS VI _INED

*

LABLE SELHOUETTE CONTOURS AS INNER
BOUNRDARIES OF ROLFOR AB TRANSITION &
3‘%’;353{& *fé?ﬁ'i P ?EP?E}{ 5’?’; &éﬁﬁi’i ié"%;% "f‘a?(}.

f’*ﬁ Qﬁ{i

3378
SEE £13. 330 |

o,

F? Fi. 330 iSEE Fils

\
-..f%’%ﬁ;
Savsan

FiGs. 330

U.S. Patent

Oct. 27, 2015

Sheet 84 of 137

Y

W

¥

STORE OKE TREFOR EACH CORNECT
COMPONENT OF ROHIN TRE SEED_LIST FOR W

TRANSIION

ED

-
o

o

US 9,171,396 B2

¥

-
PR
o

e,

T UNTRAVERSED e

TRE VM

FiG3. 33D

s

U.S. Patent Oct. 27, 2015 Sheet 85 of 137 US 9,171,396 B2

ENCOUNTER Y AELEQS LHOUETTE CONTOUR

MESH = CONTOUR MESH

k3 "\"-,,4&{;}& 3 {}

CURRENT EDGE = CON

VERTEX = CONTOUR VERTEX
___ T et
NODECOUNT=

¥ 42
CONSTRUCT ALL VM OB_SEGS CORRESPONDING TO
CURRENT SLHOTETTE EDGE F3, 35

o

3

P o '§£ o \:‘.%.3&35“.%
el %*i-‘}{}i: NODE TYRE=3T T ES @, z }
e SEE FIG, A e

i e

&&@&QQL@‘E?'@}
*
LNEXT_EDGE = DENTIFY EDGE COMNECTED YO CURRENT EDGER
THAT I8 LABELED OR FIRSTORDER SHHOUETTE EDGE r—
% 448 "a.sivgf}

DHURNENT EDGE-NEXT_EDGE

¥ e AR

CONSTRUDTY ALL VM OB _SEGS DORRESPONDBING TO
CARRENT & Lﬁi}fjﬁw?f” EOGE (M3, 38 %,
EDGEOOUNT » ERDGECOUNT 1 .

QEGR X, S

e,
Pty W“”""'m
b e ;
e et

. YR e EDBECOUNTS "M'““'”‘“"“-»»W;,., 455
L T NODESPAN LENGTHE o™ o

NODECOUNTS» e vt NENT DONTOUR
FEGE ovans, A i
; BGE o e I j_

vES e ONGPBCOUNT e
o . CONTOUR NUM_NODES? oo CEND)

e

T, e o e
o, o Tonairi
R

FIG. 344

U.S. Patent

SEE FIG. 344

%

gt

SEE FIG A

Oct. 27, 2015

Sheet 86 of 137

US 9,171,396 B2

MESH = COV_INFOINCOE MINFOLMESH

¥

NEXT EDGE = 08V INFONODE NINFDLEDGE

o
o
Ea =3
LA

%.

3460

YVERTEX = D8 INFOINDDE NIRFOLPGINT

S,

i
%

€l

J{zﬁ

m 4
S

FiG. 348

U.S. Patent

Oct. 27, 2015

Sheet 87 of 137

ENCOUNTER CURRENT LAQ&E& SLHOUETTE RDGE

i
L5
e
oo

P o,
TONODE SPAN TYRE T

i e = - o ?‘@{} > a}? 5(g{'{wgtp
HODE.SPAN_TYPE T oy o T
o SPAN COUNTER«
e e SPANLENGTHY o
N N oy o
B % T 3565
;‘ ,,-af-.m'» ."“'*"\« - ’{gS Az }_,‘,4. . e
o R SRR YRR e, TES B NG FORM
T T e WEDGE e
e ,_’N\\'. A"_’Y ” _,.V"‘Ib ?’

FORM SWHE WEDGE

k.
PR SEAY
WEDCES URING

FORM

SERSTINT Y

th}-_
LRING INTERBE
PLANES

NG

RKETEREE YO TR SRS
FOR EMTIRE SIPLEED
S HOUETTE CONTOUR

MTERSECT ’“. '_..
CONTOURNCDED 5"“5....

WFOPOINT

Fia 35A

}
}
X

WEDG 4 ESH
HTERSECTIONSUB 383 G WEN BY
CONTOUR VM INFOPOINT,
WHNEGMESH, W MNFOTHE

u%FQ?Y: ST ASE
NTERGEDT

SEE PR BB

US 9,171,396 B2

U.S. Patent Oct. 27, 2015

S,

4‘/ ,
{351 3
“"‘&W.&A

) SEEFIG. 354

Sheet 88 of 137

US 9,171,396 B2

;

F
%
wy
o

SEEFIG.35A (35

S {
(]

e GULATE HINTED? o

RETRIANGULATE TRIS INTERSECTED
BY CONTOLRE {08} POLYLINES aND
CONRECT 10O LABELED SEHOUETTE

i

R AW

YES 7 UNINFORETRIAN

o
M‘m\

o
oo
e
e
ot
w0
N
. o
it

Lar
e
5

s
&

LINK INTERSECTED TRISTG

WITHOUT RETRIANGULTION

5

g"’) \,ﬁ
{ BEND 3
., v

e

_/,,.-Méw.,.

(enn)

e,

FiG. 358

U.S. Patent Oct. 27, 2015 Sheet 89 of 137 US 9,171,396 B2

CGEIRD
LAE CON LIST=UIBTOF ALLLABELED SHHOUETTR]
LSONTOURS FOR VIEWCELL TRAKSITION

PRODESS SLHOUETTE CONTOURS I)
LAR CON LIBT A
" 3510
LAR S FDGE LISTs DENTIEY SLHOUETTE
EDGES ON (SIMPLIFED CONTOUR F1G. 38 N
: 1

PRODESY EDOES INLAB_ S EFDOE LRY

¥

;
*

OBEEG UST= CONSTRUCY v OB _SEGE FROM
LAR BiL EDGE LISTANDUNK SILEDGESWITH
DB SEGE FG. 35 254

KO "1 an mn peee e YES
NG 148 B, EDGE ., YEB
. uSTENeTY? T -

o, -
\'.""' \}‘..'-P" .-"’",f e,
N, s e e i
in e e o, e,
; .

T LAR CON LIST e
WO e, ERPTH

“
o, &
S, w.-/»"
e, e
., e
o o~

-~ iy
YE] ™y
S R R

P
TRI_SEED_LIST = PRECOMPUTED USTOF 1 TREFOR |
EACH CONNECTED REGION OF EACH ROt FOR VIEWCELL |7
TRANSITION
o PROCESS TRI_SEED LIST
CONDUCT SIMPLIFEDIDIRECTED TRAVERSAL STARTING |/
ONTRIIN TR_SEED LISTIFIG. 37)

e
P e,

- o~ "-:,N
e,

NG .ﬁtvi,uﬁf"“”” TRESERD LIST ™ 1 TRAVERBED THIANGLES
T, - EMPTYY P = R{E

o,
fiol e
P, o) §

g
{ ENE
%’\m&_@ e

U.S. Patent

Oct. 27, 2015 Sheet 90 of 137

START TRAY

ERGALWITH TR B TR BEED |
TRANGITION

LISTFOR AR

REXY

13
1
3

TRIANGLE

UNTRAVERSED

US 9,171,396 B2

7251

P FROMAE NES)
iy i SOCLUSION -

-
w5
T ~
AT, 4 L BRI
o N
o ""«..,;’:

7 TRICONTANS ™

.. BOUNDRRY {087
., A
\"\,. f«’”
T) /“f

¢
NOx
.::L./‘_o} K {4‘\\;‘}

*'a’f?é H"

N % /

ifl"i-"’ MUE TRAVERSAL 8&
iié”i{?i}f AUDED SRS OF UNRED
ORATTACHED v OB _SEGIE}

FIG 37A

i‘\n

FR e I
Y3

K‘& vy f
oo

U.S. Patent Oct. 27, 2015 Sheet 91 of 137 US 9,171,396 B2

START BREALTFIRGT TRAVERSAL OF VIWHHTRIN ¢ - %;RM
THI_BEED LIST FORAR TRANSITION

e

e A | STORE EN CORRESPONDING T0
| RORIVERCED * s EDGEAS TERKINAL PRONTIER
PRIAKGLE BDG o 3 BOUNDARY FOR BF TRAVERSAL

H k.
e 3T ENCOUNTER MUMBER (BN} = GF 4G
CHRRENT NUMBER OF
EDGES ENCOUNTERED I
BREADTH-FIRST TRAVERSAL

STORE CONNECTED BN
s | CORRESPONDING TO TERMINAL
SN FRONTIER BOUNDARY USING
a E N RUNLENGTHENCODING
< EDGE EN 18 A SIS | :
croron N\JESI2
< QCCLUDED SiDE =

\ OF RONFICANT
o'-“/

nond
5

. Te/) //"
HO 7 CURRENTER IS N,
EDGE OF

DONT TRAVERSE ACROSSEDGE | vES ™

EX a{; mxév’f v
\ >

ri Ve

Ny e

-

FIG. 378

U.S. Patent Oct. 27, 2015 Sheet 92 of 137 US 9,171,396 B2

START BREADTH-FIRST TRAVERSAL WATH TR I TR
TRY_SEED,_LIST FOR AB TRANSITION STARE 2

o o
QTP

UNTRAVERSED -
TRIANGLE EDGE 5 3T

':(

k.

S ENCDUNTER NUMBER (B8 =
CURRENT NUMBER OF
EDGES ENCOUNTERED
MESBH TRAVERSAL

COMPARE EDGEENTO
EXPLENTLY STORER EN
YALUED AND RLE STORED
YALUES FOR TERMINAL
FRONTIER BOUNDARIES FOR
BF TRAVERSAL

S EDBEEN N
NG T COBRESPONDE TG ™
—— TERMINAL FRONTIER >
.. BOUNDARY FOR 8F el
. TRAVERBALY
", f-*‘/
N, _‘.f":;.
\'.,,\m\ .d/,d./‘

YES | BT
: .

STCR TRAVERSAL AT EDGE EN

FHE 370

U.S. Patent Oct. 27, 2015 Sheet 93 of 137 US 9,171,396 B2

_TI0

- _
A

e

Ti2
T3

T8
FiG, 3702

FIG. 3701

U.S. Patent Oct. 27, 2015 Sheet 94 of 137 US 9,171,396 B2

& s
ﬁ ,”Hi & 4
%
g
o o
L oy
5
4
?"’" ‘,-r\"‘.ﬂ
o 5
. o
3-»»
el
m
f‘«.:,
B
P,

US 9,171,396 B2

Sheet 95 of 137

Oct. 27, 2015

U.S. Patent

L4480

......ﬂ

T4LE D

01 ,w .J gL

S
M. .M.wr ...H.W w M‘w &ﬂooo

U.S. Patent

:i:\}

Oct. 27,2015 Sheet 96 of

137

US 9,171,396 B2

AP=ACCESS CONTOUR'S PRECOMPUTED STARTING
BOUNDARY DELTACPLUSSUMBESH ATTADH POLYLHE
FOR VIEWCELL TRANBITION

5810,

o
<
o,

‘/.-:"

3 &%@ ———n

e
.-"‘Wj

A
.\-"f
o

ATTADH TYPE ™. 1E8 STARTING 87
e APMANMERH ENG
’ 8457 | PROUEEDING ALONG FREE EDGES

s
sy

KTTACH TYpE T YES

"
o
E

i e
o o,
ot ey,
M,

e
¥

o ATTACH AP EDGENUMEER OF
e SUMBESH & MANMESH EOGES

&

BY R

LIBY

Rt

P SUMBESH & MANMESH EDGBES

ATTACH TYRE T YE

e e BPSUBMESH EDGELIST b
L o IPRODEEDING ALONG FREE
F 1 EDGES) & AR MANVESH EDGELIST
PROCEEDING THROUGH LIST)

STARTING &Y

ATTAUH AP EDGENUMBER QF

A LINK AR EDGENUMBER OF
T SUMBESH & MANMESH EDGES

%,

=7 ARSUBMESH EDGELIST &
S T APMAINMESH EDGELIST
e 335" | PROCEEDING ALUNG FREE EDGES

STARTING AY

¥

EDGES: &

LI AP EDGENUMBER OF
A SUMBESH & MAINMESH EDGES
. —— STARTING AY

Aok TvpE e YES L ApsUBMESH EDGELIST

e 3645 APMANMESH EDGELISY
(PROCEEDING THROUBH LIST)

¥

AP=ADCESS CONTOUR'E PRECOMPUTED ENDING

i

BUUNDARY DEU
FOR VIEWOELL TRANSITION

GPLUSEUMBESH ATTACH POLYLINE

Miinuinar

Fi. 38A

U.S. Patent Oct. 27, 2015 Sheet 97 of 137

Fia. 3881

VIEWDELL 27

VIEWGELL 17

o MESH 4

FH3. 38B2

PROFILE 71 -

v

RERH

FG. 3883

US 9,171,396 B2

L PATHOY

e WIEWORLL 1

VHRWCELL 2

FROFLE 81

-
b
3
=
....... =

U.S. Patent Oct. 27, 2015 Sheet 98 of 137 US 9,171,396 B2

FiG. 380G

VIEWOERIL Y Ao B R PO

S ESH 4

L WEWCELLY
HENCELL 7

MESH

FIG. 3803

RENEE ?x‘iﬁﬁﬁ PQ

U.S. Patent Oct. 27, 2015 Sheet 99 of 137 US 9,171,396 B2

~HESH POVIS V0!

FiG. 38D1

08755
- BESH 1

U.S. Patent Oct. 27, 2015 Sheet 100 of 137 US 9,171,396 B2

MESH POL_VIS V02

FiG. 38D e

e NEWOELL D

e WEBH

orened 3o

U.S. Patent Oct. 27, 2015 Sheet 101 of 137 US 9,171,396 B2

FiG. 38E1

MESH 1
PEE 4
FOSE 14

PGP 1

MESH PO_VEB_ VDT

FiG. 382

V01 Y

MESH PO Y

U.S. Patent Oct. 27, 2015 Sheet 102 of 137 US 9,171,396 B2

Fia. 38F1

PO

VIEWEELL Y-

U S B

FiG. 2882

FOWE o
FOwi2 -

U.S. Patent Oct. 27, 2015 Sheet 103 of 137 US 9,171,396 B2

FIG. 368G

MESH POIS W02 p

iz 3802

FOWY

~NIEWCELL 2

o MESH 1
-MESH PQ.IB V02

U.S. Patent Oct. 27, 2015 Sheet 104 of 137 US 9,171,396 B2

FIG. 38G3

WD e

MESH PQ_VE

i3
=2
[}

MESH 1.

%
-
I’

U.S. Patent Oct. 27, 2015 Sheet 105 of 137

US 9,171,396 B2

f 5‘"&%”(?

e

DETERMNE OULLURIOHN BOUNDARIES N0 SLEOQUETTE
CONTOURS FOR NEVAY VIBIBLE Ci}?\xm CTED COMPONENT b7
OF MESH FOR VO TRANSITION VOIS
¥
DETERMINE PO UMITE OF NEWLY VIRIBLE CONNECTER
COMPONENT OF MESH FOR VG TRANBTION YOI VG
¥
STORE PO vALUER CORRESPONDRNG TOVISIBLE
CONNECTED QOMPINENT OF MESH FOR VI TRANBITION
eiRee
;

385

POVALUES CORRERPONGING TO
VISILE CONNECTED COMPONENT OF
RESH FOR V0 TRANSITRIR VGITIVGIE

3055

SERVER .

P31 VALUES CORRESPONDING TO
NEWLY VISIBLE CON

37’
= 2

COMPONENT OF RESH FOR VI m*‘ﬁ?
TRANSITION YOI
> v / K
CLENT -,
S BOVALUES CORRESPONDING TO s - s
VISIBRLE CONNECTED DOMPINENT / T T
) UF MESH FOR V0 TRANSITION S S
B 12 ,,,‘ o ",
< VU Lo PROBARILITY %s:; m\%
, S Y f:szrw& 5 P
’:‘E& ~ 34388 e THRERHOLD ,Jw,w»
CENERATE NEWLY (30 NOT GENERATE \’”*m% P
VIRIRLE CONNEQTED CONNEOTED 3 e
COMPONENT LISING COMPONENTIF | N E
POLBET sfa LER MESH

FIG. 38H

U.S. Patent

Oct. 27, 2015

Sheet 106 of 137

US 9,171,396 B2

FiG, as

TRIBETART FLOOTHFI LL %“%‘a
EOR YOI T

R

S rn g™
SRR

YRR e

MEXT TRIRDIGE
W TRAVERSAL

e ARTR

EDGE NUMBER (ENi =
TRIANGLE EDGES
EMUOUNTERED DURING
FLODD-FILL TRAVERSAL

T ENISONOCOLUDED ™ YES
< SE OF YOI OB OR ON
. NONOCCLDEDSDE

-..l\,\%\\ %:I‘E g 3&"} \,u-""""’w

o ERGE NS SIGNIFICANT

- ED SHHOUETTE EDGE g

] BOLANDING VOR PV
Y REGION? e

B *"ﬁ%i& £S 06 ‘&RFB&
EDGE AS TERMINALF

BOUMDARY FOR FLOO
PARAMETRIC CONSTRUCTION

T s p—

.};.“/"«-:“" \\j‘;::‘,.,.,. . 7

7 TRAVERSAL fsz‘:'\

/ YISBIITY

Y4 TRANSITION
REGION

N, COMPLETE? 7

NG

SIORE MINIMURE AND MAXBLIM P
AN QVALLIES BEPRESENTING
CONSERVEIIVE
REPRESENTATION OF vi8IB
TRAMSITION REG ‘{}h

DENTIFY ARECTANGULAR BEGION

L B0 PARAMETER SPALE
CONTARUNG CONSGERVATVE |
REPRESENTATION OF VISBILITY
TRANSITHIN REGIGN

U.S. Patent

Oct. 27, 2015 Sheet 107 of 137 US 9,171,396 B2

R RENIBAVALUES CORRESPONDING

TOREWLY VISIBLE CONNECTED

DUMPONENT OF PROCEDURAL POLYGON
MESH FOR VC TRANSITION YOIITVCY

P
CETART)
i, S e ;d"'.‘}
¥

TN

P 7 '*m,\ e 3BFF
e '/f/ o NS dh RS S Y A J\\%\:‘;\,_‘r
‘ T PROBABATY THAT
ES 7 YCHIVOTRANSTION TN
WL OCOUR >
o, . o o
e THEESHOLD T o
- : RN Lo R

PREFETOH FMIN,
PRAK, RN, OMAZK,
DA

“““““ _— P
DO NOT GENERATE
CONNECTED
COMPONENT OF

MESH

4 L BN)

T S
e

.-/"'"" N“‘_L

o PROBABILITY THAT ™

o YOI VOR] TRANSITION I
N . qu?; g» i., G{: {:‘ij f:%, * ,-/""‘./
THRESHOLDY

GENERATE MEWLY VISIBLE CONRECTE
COMPONENT OF PROCEDURAL POLYGON MESH
LISHNG PRIN, PRAK, QMIN GMAX PARAMETER

YETTOVORTVIEWCELL TRANBITION

FIG. 38

US 9,171,396 B2

Sheet 108 of 137

Oct. 27, 2015

U.S. Patent

HALAWYYEYd 4

gee

€T

£E°E

AN

IHEE Ol

2L

FAS

g3

m

SL°0

840

HILIAYEYE D

US 9,171,396 B2

Sheet 109 of 137

Oct. 27, 2015

d3i3NVEYd d

EL

2g

£E7

Bl

CHBE O

Li

%,

S e v.x...%.}.fo

¥

i

91!

U.S. Patent

G40 340 590
HILIWYEYE D

US 9,171,396 B2

Sheet 110 of 137

Oct. 27, 2015

U.S. Patent

HALANYHY d

EARE v

18

ZE'7

s

LEL

-1 g

5L°0 0LD

HALIWYEYE T

59°0

R

U.S. Patent Oct. 27, 2015 Sheet 111 of 137

o
P
e (f
o ¢
_;""fﬁ‘,\ v"? .
P i o 7
- 7 P
-:"J f P ~ w"
r\ e ”¢”f' "':\“
5,
‘\ /
o /

US 9,171,396 B2

., DR AB=DRBA

£ s
im\ﬁ‘.& kf.-,-!

LUSON REGION VIEWCELL B

g
i
ke
7 H
I H
£ H
5 E
g i
7
.
i

- DUCLUSION REGION VIEWCEL

LA

FIG. 388

U.S. Patent Oct. 27, 2015 Sheet 112 of 137 US 9,171,396 B2

. DRBASDRAB

{HICLUBION

- GUCLUSION REGION VIEWCELLA

4020

Fiz. 40

U.S. Patent Oct. 27, 2015 Sheet 113 of 137 US 9,171,396 B2

U.S. Patent Oct. 27, 2015 Sheet 114 of 137 US 9,171,396 B2

i, 418

U.S. Patent Oct. 27, 2015 Sheet 115 of 137 US 9,171,396 B2

FIG 410

US 9,171,396 B2

Sheet 116 of 137

Oct. 27, 2015

U.S. Patent

diy "9

LEAAS

U.S. Patent Oct. 27, 2015

S

CETART D

o
ettt S

¥,

e ’\.,
N

< VIEWCELL
BARENT T
CHILLY

;

Sheet 117 of 137

THANSITION I3

US 9,171,396 B2

.,

»:,,\“J
4-‘/,5'.‘
A

3

STORE RELTAGSSUBMESH AND
LABELED SHLHOUETTE CONTOUR

STORE LABELED SUHOUETTE
CONTOUR DOSC HFORMATION

{DOEC & DESLY NFORMATION

A

{ %%‘»éi}

\-& e ”-f“

"-.u-

: é&
MODEL

SECGMETRY

[HSTANCE «
VALUER

,
.

Y

Fi3. 424

a
e

RO

J‘f et X34 h\

§L&*~ZE>

YES

e

‘.'/’

¥ i

DETERMINE DELTAM T DELTAPYE
VESIBILITY DATA FOR MODEL
GEOMETRY

D HOT DETERMINE DELTAVMY
RELTAPYE VERIBLITY DAIAROR
MODEL GEOMETRY

,,:L
{g&@;

, i

oot

FiG. 428

Jy

o)

it M

U.S. Patent Oct. 27, 2015 Sheet 118 of 137 US 9,171,396 B2

shruct DDLU Eoge

i

3

ind dell_vertad 2] ¥ ndices I 2 demenis of sy of Local Vedsn shuslures
char sum_using # pavber of oosl VMIPYS referndng s edge

kL

shuet DL Verex

H
3

float point{3]; ¥ x.ye value of vedex
shar nim sy # rusnber of loos VIEPVE refarencing this vertex

%

&5

struct DOL T4

it el _edgeldl ¥ tices i D eloments of aroay of DOL_Edgs struchuss
intneighbor_tranglex(3L 4 indices o 3 edge-adiacent Mangies b amay of BOL_Td sbuclums
char mum_using, # ruber of oosl VRIPYS misrending this dangle

i

shust Global_to DOL_Linkmap _Edge

?

int ddl_edos _index: #index of edge i DDL_Bdos array for & particular

>

struct Globad o DOL_ Linkemep Verdex
;
kS

it ol _verlex index; #index of varlex in DL Verlex aray

L

shust Global fo DU Unkmap 1o
¥
{

intdd t_ndex; Hindesofwiin DOL Y anay
3

&
shruet Global to DDL_Linkmap Mesh

{

intddl i indew: Hindex ot in DL Mesh arny
¥

5
FiG. 434

U.S. Patent Oct. 27, 2015 Sheet 119 of 137 US 9,171,396 B2

shunt DBL Megh

H

S

int ddl_B1 # indives o statting Yangledn amay of DDL_ T struchues
charnum_ssing # number of local VMPYE relerendng his mesh

3

frunt PYS

i

oo,

inttinounts Jndanber of Tangley in the DDLIPYS
ind figiray; #ingdex of of DL T aray comprising e PYS

intadpenount Fnunber of sdges in the DOUPVS
intadosaray, ¥ index of of BOL_Edge amay comptising the PVS

it verlssonund
int vertexaney, #

puamier of verlew in the DDUPYS
index of of DUL_Verlex arosy comprising e PYE

g

FIG. 438

US 9,171,396 B2

Sheet 120 of 137

Oct. 27, 2015

U.S. Patent

b Dl

k4

%x.

ECTERETIGER]
WaAg AIGSIA

W JRpesag
JUDAT ALBGISIA

IS -apoTan
Wang AIGISIA

4

A

indyen
N AN

Irly ssontug soriag

f;$$M%%%

4 -ABpONaE ISAg AURSIA

Bivr
7zl ssanuug s8niag

~EBPOTAE WAAT ALIHSIA

FII 5500mid 38A48%

~HBPOBHE PAG AUOSIA
X

[

P 1T
pyfas usen Lo

LG

?}59331?5&3§§§§3§5§3§3
IBAIRE PYFBIONS YSRY) JUBAT ANRGISIA

A A A

: {
Frley ssanoug anms

-JRRUIBC BIIAT AURGISIA

W SEBI08 IBASEE

,.&vnumawa%wmxm%m%
'S i

vy

JUBAT APHESIA

RS

P

IDASEG JUDILOT JLaNT ABPUISIA

»
3

B
P

X i s o A 4 s s e o

US 9,171,396 B2

gy D

WBAT AUHGBIA

5} waenn

WYY

ARELNOY INIAT ALTHEGA
AL HILNE AN

WEE 334 TYNOILGaY

RSO LNAND 3OEYHD

A e B0 ey

e e et e e e o

XN

HEMAT ABHGISIA

.

NWWRM neit ,,

LIHB0 JHOIEHEYD
O 334 WNGEITOY

SASLNETY FOHYHO

UBITdapnIag
Wang ALpIsiA

flpeam
Ranag ALmIA

Sheet 121 of 137

Oct. 27, 2015

fE Ty 99000 JA9s

(110 ss0mug BAsag

ES

~FOPIBE IRAT AHBIHISIA
: K

Sevoreanorsanorennorennord

. . PPV, 5

e mwwa T
PYfeInIS Yse)
AT AUPGISIA

S ——

PRt

PR
i

JRRIRG PYFBI0NG YSED 1A ARPGISIA

4

FL Y ssao0ug 19008
-ABEGBEY JUBAT ABBOGISIA

0t

M ORSIHGEG dahday

pONE BN AUPISIA

A A e

F e

&
o
o

SBAIDG JIIUOY) JUDAT ARBGISIA

U.S. Patent

U.S. Patent

Oct. 27, 2015

SERVER UNIT 7

Sheet 122 of 137

DELTA-PYE DATAPOR
RGDELED ERNVIRONMENT

s
o

o
e PRETRS
v, o
e 3

BROADUCASTTO CLIENT UNITE

LBING NAVIGATION PREFETOH

BASED O SCRIPTED CAMERA
PATH

VARIABLE GECNETRIC TEXTURE
R PARAMETRIC DAIR
HEPRESENTING MRECTED AD
MESSAGER

b

e

o
e

oo,
o,
R SRR

NSERT A8 VARIABLE PACK

FOR ZPECIFIC REGIEVER uNd

PURING PERIDDE WHER NON-
VARIABLE DATA HAS LOW

CONBINE VARIBBLE
AND HON-VARIABLE

b

R]
R S2% XS

PACKETS 4540,

L] VARIABLE GEOMETRIC TEXTURE

BANDWDTH RECUREMENT 4 B
LOCATION THATWILL BE VIBIBLE
TR USER

*

US 9,171,396 B2

TREGGER READ OF VARIABLE
PACKET DRIA

Rt o
. o
RSN iR
i s

O PARMMETREY ATA
REPRESENTING GRIECTE

"t
AR "
e, e

ASBOGIED WIH AR

#

;f COMBINED DATA STREAM
/

~f USERLOCATIONANDIOR
< CLIGK DATS

USER CLICKS ADVERTIZING
MESSAGE GRIEDT

OFTIONAL CHARGE
FER CLICK

4 556

Fifs. 48

U.S. Patent Oct. 27, 2015 Sheet 123 of 137 US 9,171,396 B2

RIABLE SEOMETRIC TEXTURE
DR PARANMETRIC DATA
| REPRESENTING (SRECTED AD
RESEAGES

e, e

"G&Eﬁiﬁ ?:E.: ﬁu %ﬁ»?é?

Fa
{.

o
e, s R s
e, e o, e
AR é,t\:fﬁ; AN R "

5"’5?{3*’* gﬁ f‘*‘ i‘ ﬁﬁ;ﬁ UNIY INSERT AS VARABLE PACKETS
7 fa;:z;'*;«; - a;;: £ ON LRER FUR SPECIFIG RELIEVER UNIT
PAURETSBRASED DR SE DURING PERIODS WHEN NOK-
‘5’““ LATION YARIAELE DATA HAS LOW

, BANDWILITH REQURIEMENT & N
e, R LOCATION THAT WL BE VISIBLE
{ (START 3 COMBINEADAND | FOHIRER

RS NON-AD PACRETS

e 4 EEE L TRIGGER READ OF VARIABLE
PACKET DATA

L. VARISBLE &%ﬁ*ﬁ%‘%ﬁm £ ?Ex?‘z}?ﬁ
' OR PARANETRE DATA
REPRESENTING ORIECTS
ARSOUIATED WITH AD

H -
i A AT STBE AL P LISER LOCATION ANIOR '
fé’ CUNBINED BATABTREAM ;{ AET f‘é’ CLICK DATA fL

RECIEVER Uit~ 81

USER CUCKE ADVERTIZING | OPTIONALGHARGE
WMESBAGE ORIECY PER CLICK

VE'-a...W 8 g :« ooy

U.S. Patent Oct. 27, 2015 Sheet 124 of 137 US 9,171,396 B2

YECTOR1

127 ‘ |

VIEWCELL

T G, 47A

U.S. Patent Oct. 27, 2015 Sheet 125 of 137 US 9,171,396 B2

.

WCELL]1A,

r-
I
1

Y]

,:]

A

YIEWCE

FIG. 478

4703
CTOR2

VE

I

LA™

Pt
YW

U.S. Patent Oct. 27, 2015 Sheet 126 of 137 US 9,171,396 B2

FIG. 47C

U.S. Patent Oct. 27, 2015 Sheet 127 of 137 US 9,171,396 B2

FIG. 47D

U.S. Patent Oct. 27, 2015 Sheet 128 of 137 US 9,171,396 B2

_,.-/*’"'""m"""»-v.u

START beenowl FIRSTAD OBJECT

i

{‘

R R

384T, 4805

NEXT ADOBIECY

¥

o

e

i
S

e
et

e EMORIECT B VIBLE T

st

’W“"“*«.-«. ?{} bg&&? o e
i, s

e
iy s
-'w._,,M‘. e
- e

e
e

w«u‘—’y.,mh‘-\u. ...-M..~
YES 3 e AR

RENDER AD OBJECT WITH ACCENTUATED RENDERING
WOHCATING OBJECTAS BELECTABLE DURNG ALTIVE

FERIOD

-
e "o
e N,
o
2t -,
o

R
g

RO " USERPRESSES e
BUTTON DURING
T AUTNEPERIOD?

o
ot
-
e
o

- e
o ot
g

vEs | 825
K 4 £

AL OBECTY SELECTED

¥ !

RECORD SELECTION A5 CLICK ONAD
o~ PRt ’é‘g 3 5

¥ H

SEND ADDITIONAL INFORMATIONTD

WEB PORTAL

FIG. 4BA

U.S. Patent Oct. 27, 2015 Sheet 129 of 137 US 9,171,396 B2

e e Y FIRST GASH
5;?’@‘%? STORE GRIECT

"*w w,ww"

STORE OBJECT

o

e QAS% STORE OBUECT "”“*M

s

I 18 VISIBLE TO USER? e

e

. et
"»-.-“’w'.‘ L o

,w‘““” wé%%i'z
%3

RENDER CASH STORE @%é&@? WITH f’«f"* CENTUATED
RENDERING INDICATING UBJECTAS BELECTABLE DURING
ACTWVE PERIOD

o R P ¥
. o e .\N’%_,.’.}:‘Q\
NG USER PRESSES o
e e NN S BE 3 2 x;.u\‘.
BUTTON DURING
’V\:"—u » y) . ; ,.~/-'”
e ACTWE PERIOD?
N, '*«.\.,WMW » . &,...«'/“
"ww."\‘ y ",.-* G

¢
CASH STORE OBJECT SELECTED

RECORD 3&&&6‘?&3?&% AZ PURCHABE OF
LAGH STORE QBJIECY

SEND ADDITIONAL IFORMATION 'fﬁ}
WEH PORTAL

FiG. 488

U.S. Patent Oct. 27, 2015 Sheet 130 of 137 US 9,171,396 B2

A o g?seﬁm S

S ADNERTISNG VIRIBLITY BVENT
s GATASTREAM A

T USEROPTSOUTOR e,
YES 7 ADVERTRING
M. VGIBLOYEVENTDATA 7| DERAUT S

T, BIREAM? e DOMBINED ™
-, o STREAM

3
DASPLAY QLY
ENTERTAINMENT WISIBIITY
EVENT DATA BTREAM

g

CHARGE USER A PREM ijﬁé
FEE

PREMUMFEE = F{VALUE ?’

ADVERTIS ' R N

SHIAG DET i?;?i%&%iiﬁéiﬁ‘.. ﬁ‘{
ALCTION

FIG 484

U.S. Patent Oct. 27, 2015 Sheet 131 of 137 US 9,171,396 B2

o7 ENTERTANMENT (GAME OR ya
.. /}, &ggg} "g_.:}sg Lﬁ'\{* E";jgﬁ? :}ﬁ,?ﬁ .
A STREAM S ases
0 AUVERTIGNG VISIBLITY EVENT rd
v DATASTREAM I
-~) /
G
\%v{f
o '.f'j Mm\“‘w\
e e S

e
=

ey " B . .. “, e
N3 ADVERTIRING “ YES

g e e g s 1 % g P
T, VISIBLITY EVENT DATA o
-\“"«_._ TR R g Y 5 ’,,,»‘
'"'f\,.\“ ':'.5% I‘&C}"—.&g 4 J‘ﬁ/ ”

o BIREAN .

B - M ‘;
DISPLAY ONLY COMBINE & DISFLAY BUTH
o HSELAYONLY ENTER TAINMENT AND
EMTERTANMENT VISBILITY RTINS I FTY
: . B— EVENT DATA STREAME
oo
APPLY DIRCOUNT YO PRICE
OF ENTERTAINMENT STREAN
DIBUOUNT = FVALUE OF
ADVERTISING INGAME DRIN
SiM AG DETERMINED BY
AUCTION

FiGs 48R

U.S. Patent Oct. 27, 2015 Sheet 132 of 137 US 9,171,396 B2

" ENTERTAINMENT (GAME OR e

g I VISIRILITY EVENT DATA
e STREAM S e
vl DASH STORE DRIEDT e
s VISIBILITY EVENT DATA A
S STREAM S
f ’MWM.’V\';
{ START 3
w‘/‘w ‘,«.-:-ﬁ/ 8 """\4\\\'{\’ I»'ﬁlﬁ'g 3
.4:-" /J - . . ’\L.'?%:"'v
- 7 USERCPTSOUTOF ™ NEY
YES DASH STORE QRIECT T
T VISIILITY EVENT DATA 7L DERALY
T STREAMY 7 COMBINED
T STREAN
e I
i F DONEINE & DISPLAY BOTH
CHSPLAY DNLY intiotolinibuioioiitl)
N ENTERTANMENT VISIBILITY ENTERTANKENTAND CASH | 3

STORE GRIECT VIBIBILITY

EVENT DATA STREAN EVENT DATA STREANS

, o B
CHARGE USER A PREMLIM

5040

PREMUMFEE = FVALUE OF
LASH STORE INGAME ORIN-
BHIAS DETERMINED BY
AUCTION

FIG. 504

U.S. Patent Oct. 27, 2015

Sheet 133 of 137

ENTERTAINMENT (GAME OR
DI} VIBIBILITY EVENT DATA

A - e
KTREAM

US 9,171,396 B2

CASH STORE ORIECT

VISBILITY EVENT DATA

BTREAM s

{ START)
et o

S

SN——

e 3
- /"’ \"\,
o e,
o n
g
o

SYORE QGRIEDY

- YISIRILITY EVENT DATA
""“\._‘N\ SS?REA&% ?
4'"'%_ e
'\‘\,\ \-f“'f:.
'. ﬁ'\‘\,\ e e
~BGTG

o o,
wﬂ"ﬂ USER QPTE INTG CASH

.,
e,
o,

e

¥

DISPLAY QNLY
ENTERTAINBENT VISIBILIYY
EVENT DATA BTREAM

CONEINE & DIBPLAY BOTH
ENTERTANMENT AND CASH
STORE QRIECTVISEBRTY
EVENT DATA STREAME

oo BT

APPLY DISCOUNT T PRICE
OF ENTERTAINMENT STREAM

% :

B

CHRGOUNT = FAVALUE OF
CASH RTORE CRECTS i
GAME OR IN-BI A8
DETERMNED BY AUCTION

FiG. 508

US 9,171,396 B2

Sheet 134 of 137

Oct. 27, 2015

U.S. Patent

R
~guidur
AU

mipmpiey soydes

FBALIC) ARG SodRID

SI1D0 20 XII0HQ Yosoumy B idy

WBHY A

UOISHIOD

HoneBineN wagsAsgng sondessy

SPOD WIOMION JUSND

s315AUd

i

pUnos

T8

i wm
., punoyg

BEELY SHONON 1A T

GEEE RIS

Supugme | UOBIOD S i
§4 syl -

arorl

FIRABG A GG

Big-, gied]

seposug {Iahusag Aupasia

sopp- | Do eHEIRQ

FUIBEY

US 9,171,396 B2

Sheet 135 of 137

Oct. 27, 2015

U.S. Patent

2ApMmpieH soydesn

AU

{X308410)
YOosoIoy B'e) {4y sondein

PUTDS

{G9E] suRpRIu JUBHD 3A

> BPOTY IO J9895

WI9IsASONS
sondesoy

HOBHOD B
uoedineN

BROT YAOMIBN TUSD

35AUd

iy

punog

297

BITHEEIN

adug
BURD

& 3§
BGTG e st W
HHETAY L i
PIRIPIA SBAIBE 3A
JBHT A - ———
BED
suduy - :
J[LIBEG BT

andul uouseony

X

P EE T

s
LG

H

ISLQLIL(BUIRD

US 9,171,396 B2

Sheet 136 of 137

Oct. 27, 2015

U.S. Patent

€S

v

314

US 9,171,396 B2

Sheet 137 of 137

Oct. 27, 2015

U.S. Patent

S 'Ol

L8PS LGP
sy Rt pumnghany

e e e e

SLvs
OBVE i e e ot OBVE L1 SOELE
BIRPIUL 4 Nl HEIGBN

3495
S8

e e A WAV WA AR AR AN MW N SRR SRR SRS SRR
dee WL AN W W W e e W e e e e

5 Q9FS O5vs S 08P

i SR MR PR Aumainpy wiep SERGEMOT sehnG

w. m | :

w odeas m w

m .\

W ﬁ %ad
O7ps " M i oo . v s o e . o . o o S . o v s s i o i w0 d g

T

US 9,171,396 B2

1
SYSTEM AND METHOD OF PROCEDURAL
VISIBILITY FOR INTERACTIVE AND
BROADCAST STREAMING OF
ENTERTAINMENT, ADVERTISING, AND
TACTICAL 3D GRAPHICAL INFORMATION
USING A VISIBILITY EVENT CODEC

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of the earlier filing date
of PCT patent application number PCT/US2011/042309
entitled “System and Method of From-Region Visibility
Determination and Delta-PVS based Content Streaming
Using Conservative Linearized Umbral Event Surfaces” and
filed on Jun. 29, 2011, which claims the benefit of the earlier
filing date of U.S. Provisional Application 61/360,283, filed
on Jun. 30, 2010, the entirety of each of which is incorporated
herein by reference. This application claims the benefit of the
earlier filing date of PCT patent application number PCT/
US2011/051403 entitled “System and Method of Delivering
and Controlling Streaming Interactive Media Comprising
Predetermined Packets of Geometric, Texture, Lighting and
Other Data Which are Rendered on a Receiving Device” and
filed on Sep. 13, 2011, which claims the benefit of the earlier
filing date of U.S. Provisional Application 61/382,056
entitled “System and Method of Delivering and Controlling
Streaming Interactive Media Comprising Predetermined
Packets of Geometric, Texture, Lighting and Other Data
Which are Rendered on a Receiving Device” and filed on Sep.
13, 2010, the entirety of each of which is incorporated herein
by reference. PCT patent application number PCT/US2011/
051403 further claims the benefit of the earlier filing date of
U.S. Provisional Application 61/384,284 entitled “System
and Method of Recording and Using Clickable Advertise-
ments Delivered as Streaming Interactive Media” and filed on
Sep. 19, 2010, the entirety of each of which is incorporated
herein by reference. This application further claims the ben-
efit of the earlier filing date of U.S. application Ser. No.
13/420,436 entitled “System and Method of Reducing Trans-
mission Bandwidth Required for Visibility-Event Streaming
of Interactive and Non-interactive Content™ and filed on Mar.
14, 2012, which claims the benefit of the earlier filing date of
U.S. Provisional Application 61/452,330 entitled “System
and Method of Controlling Visibility-Based Geometry and
Texture Streaming for Interactive Content Delivery” and filed
onMar. 14,2011, the entirety of each of which is incorporated
herein by reference. This application further claims the ben-
efit of the earlier filing date of U.S. Provisional Application
61/474,491 entitled “System and Method of Protecting Game
Engine Data Formats and Visibility Event Codec Formats
Employing an Application Programming Interface Between
the Game Engine and the Codec” and filed on Apr. 12, 2011,
the entirety of which is incorporated herein by reference. This
application also claims the benefit of the earlier filing date of
U.S. Provisional Application 61/476,819 entitled “System
and Method of Delivering Targeted, Clickable, Opt-Out or
Opt-in Advertising as a Unique, Visibility Event Stream for
Games and Streaming Interactive Media” and filed on Apr.
19, 2011, the entirety of which is incorporated herein by
reference.

REFERENCE TO COMPUTER PROGRAM
LISTING

The following table shows a source code file named Pro-
cedural_Visibility that is provided as a computer program

2

listing electronically in ASCII text, the entire contents of
which is incorporated by reference herein.

TABLE A

w

Computer Program Listing Appendix

File Name Type Last Modified
1 Procedural_ Visiblity Text File 4/11/2012 5:06 PM
10
BACKGROUND OF THE INVENTION
1. Field of the Invention
15

This invention relates to a method and system for deliver-
ing interactive and/or broadcast content as a visibility event
stream comprising renderable 3D graphics information.

2. Description of Background

The method of controlling a visibility-event data stream
delivering interactive content, which may deliver a fully inter-
active game experience or, alternatively a video-like experi-
ence in which interactivity is not required but available to the
user, is described in PCT patent application number PCT/
US2011/051403 entitled “System and Method of Delivering
and Controlling Streaming Interactive Media Comprising
Predetermined Packets of Geometric, Texture, Lighting and
Other Data Which are Rendered on a Receiving Device”.
Additionally, methods of reducing the bandwidth required to
30 deliver broadcast or interactive content as a visibility event
data stream are described in U.S. application Ser. No. 13/420,
436 entitled “System and Method of Reducing Transmission
Bandwidth Required for Visibility-Event Streaming of Inter-
active and Non-interactive Content”.

Real-time 3-D graphics display hardware has become
increasingly powerful and atfordable. The availability of this
hardware has enabled computer and game-console applica-
tions to routinely display scenes containing tens of thousands
of graphic primitives in each frame. With few exceptions
these hardware display systems employ a Z-buffer based
hidden surface removal algorithm.

The z-buffer hidden-surface removal algorithm solves vis-
ibility per-pixel by computing the Z (depth) value of each
rasterized pixel (or fragment) of every primitive in the view
frustum. During rasterization the Z value of the current frag-
ment is compared to the existing Z value in the frame buffer
and the color of the fragment is written to the frame buffer
only if it is has a lower Z value than the existing value in the
50 Z-buffer.

While this approach provides acceptable performance for
relatively simple scenes, it can fail to provide adequate real-
time performance for complex, realistic scenes. Such scenes
tend to have high depth complexity which typically forces
each element of the Z-buffer to be compared multiple times
during the rendering of a single frame. Essentially all hidden
surface samples that lie within the view frustum must be
Z-rasterized and compared to the Z-buffer values to find the
closest visible samples.

In some Z-buffer implementations the rasterizer often per-
forms not only the Z determination and Z-buffer compare for
all hidden fragments but also computes the complete render-
ing of hidden fragments, writing the resulting color to the
frame buffer only if the corresponding 7 value was closer than
5 the existing Z-buffer value. For scenes of even modest depth
complexity, this can result in wasted computation and dimin-
ished performance.

20

25

35

45

55

60

o

US 9,171,396 B2

3

Other z-buffer implementations includes some type of
“early-Z" rejection in which the color value of the fragment is
not computed if its Z value is greater than the corresponding
Z-buffer value. This can reduce rendering of hidden frag-
ments but is only maximally effective if the graphic primitives
are rendered in a back-to-front order.

Another improvement to the hardware Z-buffer is the inte-
gration of certain elements of the “Hierarchical Z-buffer”
algorithm (Green et al 1993) (Green N., Kass, M., Miller, G
“hierarchical Z-Buffer Visibility” Proceedings of ACM Sig-
graph 1993 pp. 231-238, the entirety of which is incorporated
herein by reference) This algorithm employs a hierarchical
representation of the Z-buffer to perform rapid visibility
rejections tests. The complete hierarchical Z-buffer algorithm
has proven difficult to implement in hardware although basic
versions of the hierarchical Z-buffer pyramid itself has been
implemented in some systems (e.g., Nvidia, ATI). In these
implementations a low resolution version of the Z-buffer is
maintained in memory that is local to the individual rasterizer
units. These local representations are used in the previously
described “early-Z” rejection test. If an individual fragment
can be rejected by comparing it to the low resolution, locally
stored Z-buffer element, then a slower access of the high
resolution (non-local) Z-buffer is avoided.

In these accelerated hardware z-buffer systems “early-7”
rejection can sometimes prevent rendering of hidden frag-
ments and hierarchical-Z pyramid can speed the “early-Z”
rejection test. Nevertheless such accelerated systems still
require that all primitives within the view frustum are pro-
cessed through the geometry phase of the graphics pipeline
and all fragments, including occluded surfaces, in the view
frustum are processed through at least the Z generation/rejec-
tion test phase. Consequently, these systems can still perform
poorly when rendering scenes of high depth complexity.

Given the relatively poor performance of Z-buffer systems
for scenes of high depth complexity, algorithms have been
developed which identify occluded geometry and exclude
such geometry from both the geometry and rasterization
stages of the hardware graphics pipeline. These occlusion
culling techniques can be performed either at run-time orin a
preprocessing stage. A review of visibility culling techniques
is published in Cohen-Or et. al. (2003) (Cohen-Or, Daniel, et
al. “A Survey of Visibility for Walkthrough Applications.”
IEEFE Transactions on Visualization and Computer Graphics
9.3 (2003): 412-31. Print., the entirety of which is incorpo-
rated herein by reference.) Visibility culling refers to any
method which identifies and rejects invisible geometry before
actual hidden surface removal (i.e. by Z-buffer) is performed.
The well established methods of backface culling and view
frustum culling using hierarchical techniques are routinely
employed by applications to cull graphics primitives from the
hardware pipeline. Occlusion culling is a type of visibility
culling approach which avoids rendering primitives that are
occluded in the scene. Occlusion culling involves complex
interrelationships between graphic primitives in the model
and is typically far more difficult to perform than view frus-
tum culling.

In general, run-time occlusion culling techniques deter-
mine what geometry is visible from a single viewpoint. These
are called “from-point” culling techniques. In contrast, pre-
processing approaches to occlusion culling determine the
subset of geometry that is visible from any viewpoint in a
specified region. The latter methods are referred to as “from-
region” visibility techniques.

The survey of Cohen-Or et. al. (2003) focuses on “walk-
through” type applications which are characterized by a rela-
tively large amount of static geometry and high potential

10

15

20

25

30

35

40

45

50

55

60

65

4

depth complexity. Many computer games, simulators and
other interactive applications fall into this category. These
applications tend to benefit substantially when “from-region”
occlusion culling techniques are applied to the geometric
database in a preprocessing step. These techniques partition
the model into regions or cells. These viewcells are navigable
regions of the model which may contain the viewpoint. Dur-
ing preprocessing the subset of graphics primitives that are
potentially visible from anywhere within a viewcell (poten-
tially visible set or PVS) is determined. The principal advan-
tage of from-region visibility techniques is that the consider-
able computational cost of occlusion culling is paid in a
preprocessing step rather than at runtime.

In general, from-region visibility preprocessing techniques
aim to compute a conservative overestimate of the exact PVS
for a view cell. The first from-region visibility methods were
developed for interactive viewing of architectural models.
Architectural models are naturally subdivided into cells (eg.
rooms, halls) and the visibility between cells occurs through
connecting openings (doorways, windows) called portals.
Airey (1990) exploited this structure in simple, axially
aligned models. He demonstrated a method of identifying
polygons visible through portals using an approximate, but
conservative, shadow umbra calculation.

Teller (1992) (-.Teller, Seth, Visibility Computations in
Densely Occluded Polyhedral Environments. Diss. U of Cali-
fornia at Berkeley, 1992. Berkeley: U of California at Berke-
ley, 1992. GAX93-30757. ACM Portal, the entirety of which
is incorporated herein by reference) and Sequin extended the
method of cell-and-portal from-region visibility to non-axis
aligned polygonal models which do not require user defined
walls and portals. Teller employed a BSP tree defined by the
polygons of the model (autopartition). The leafs of the BSP
tree are necessarily convex polyhedra which may not be com-
pletely closed. These convex polyhedra are the visibility cells
(or viewcells) of the model. Using cell adjacency information
available in the BSP graph, the open regions on the boundary
between adjacent cells are identified and enumerated as por-
tals between visibility cells.

Thus, Teller exploited the structure of the BSP autoparti-
tion to reduce the from-region visibility problem to a more
restricted and simplified problem of visibility through a
sequence of polygonal portals. Teller showed that even for
this relatively restricted visibility problem, the visibility event
surfaces separating from-cell visible volumes and from-cell
occluded volumes are usually quadric surfaces.

Teller determined cell-to-cell visibility by employing a test
for the existence of extremal stabbing lines between cells
through a portal or sequence of portals. In this method cell-
to-cell visibility is determined by establishing the existence
of at least one ray that originates in the source cell and pen-
etrates a sequence of portals to connecting cells. For example,
the existence of such a ray through four portals is given by an
extremal stabbing ray which is incident on any four edges of
the relevant portals. Such a ray is identified using a Plucker
mapping in which lines in three space are mapped to planes in
5-space. The intersection of these four planes form a line in
5-space which is intersected with the Plucker quardic to pro-
duce at most two non-imaginary results. Each of these inter-
sections corresponds to a line in 3-space which intersects the
four portal edges, i.e. an extremal stabbing line. The cost of
locating an extremal stabbing ray is O(n?) in the number of
edges in the portal sequence. Because the stabbing is per-
formed incrementally the overall cost is O(n®). The method
employs singular value matrix decomposition which can
exhibit numerical instability as a consequence of geometric
degeneracies encountered in the stabbing sequence.

US 9,171,396 B2

5

Teller also developed a method of computing the exact
visible volume through a portal sequence: the antipenumbra
volume. As previously noted this volume is, in general,
bounded by both planar and quadric surfaces. In this method
the edges of the portals are once again dualized to Plucker
coordinates, with each line in 3-space representing the coor-
dinates of a plane in 5-space. The planes corresponding to all
edges in a portal sequence are intersected with each other,
using higher dimensional convex hull computation, to form a
polyhedron in S-space. The intersection of the faces of this
polyhedron with the Plucker quadric correspond to the extre-
mal swaths, or visibility event surfaces between the portal
edges. The intersection of the 5D faces with the Plucker
quadric are not computed directly. Instead the intersection of
the 5D edges with the Plucker quadric are computed. The
intersection of the edges of the 5D polyhedron with the
Plucker quadric correspond to extremal stabbing lines which
bound the swaths. The intersections of these 5D edges with
the Plucker quadric are identified by finding the roots of a
quadratic equation. The swaths are identified indirectly by
computing the intersections of the 5D edges with the Plucker
quadric and examining the faces ofthe 5D polytope (edges in
3D) that share the 5D edge.

Each swath may be a component of the boundary of the
antipenumbra or, alternatively may be entirely within the
antipenumbra volume. A containment test is used to identify
boundary swaths.

Teller found that the antipenumbra computation is difficult
to implement robustly. This method requires high-dimen-
sional linear programming computations and root finding
methods which, together, are not sufficiently robust to be used
for complex models.

Teller (1992) and Teller and Hanrahan (1993) (Teller, Seth
J., and Pat Hanrahan. “Global Visibility Algorithms for Illu-
mination Computations.” Proceedings of the 20th Annual
Conference on Computer Graphics and Interactive Tech-
niques. New York: ACM, 1993, the entirety of which is incor-
porated herein by reference) also developed a simpler tech-
nique to determine cell-to-cell visibility and cell-to-object
visibility through a portal sequence. In this implementation
the antipentumbra is conservatively approximated by a con-
vex polyhedron. This “linearized” antipenumbra is bounded
by separating planes of the portal sequence effectively form-
ing a convex hull of the antipentumbra. The planes defining
the boundary of the linearized antipentumbra are intersected
with each other and with the bounding planes of the bsp leaf
cell to determine visibility through the portal sequence.

Although the linearized antipentumbra method overesti-
mates the cell-to-cell visibility through a portal sequence it is
amenable to a robust implementation.

In 1996 John Carmack employed a method of precomput-
ing cell-to-cell visibility for the computer game Quake. Car-
mack’s method of visibility precomputation in Quake is
somewhat similar to the linearized antipenumbra method
described by Teller. In both Teller’s and Carmack’s method
the geometric database is subdivided by a BSP tree in which
large occluders (e.g. walls, floors) acted as splitting planes.
Theterminal leafs of such a subdivision are convex polyhedra
which may have one or more non-closed boundaries, or por-
tals. In both methods the portals between leaf cells are iden-
tified and cell-to-cell visibility is established using a linear-
ized overestimate of the antipentumbra between the portals.

In Teller’s method the linearized antipenumbra is con-
structed by pivoting from each portal edge to two specific
extremal or “separating” vertices in the portal sequence: one
in each halfspace of the portal. (An extremal vertex of a portal
is a vertex that together with the original portal edge form

25

30

35

40

45

50

55

6

separating planes between the two portals.) The extremal
vertices chosen result in planes which have the portal and all
other extremal vertices in the same halfspace.

In Carmack’s implementation this pairwise, sequential
intersection of linearized antipentumbra is used to establish
the existence of cell-to-cell visibility in a portal chain. The
actual intersection of the antipentumbra with objects in each
cell is not performed. The results are stored as a cell-to-cell
PVS for each leaf cell.

Carmack’s 1996 implementation of Teller’s algorithms
established BSP spatial subdivision with through-portal cell-
to-cell visibility as the preferred method of visibility precom-
putation for computer games. Subsequent 3-D computer
game systems either derived directly from Carmack’s Quake
Code (e.g. Quake II, Quake III, and Valve Software’s
“Source” game engine) or unrelated to it (e.g. Epic Game’s
Inc. “Unreal” game engine) have adopted this method of
precomputed occlusion culling for densely occluded polyhe-
dral environments.

In all of these systems the modeled environments of the
game are constructed using “level editing” tools to create the
geometry of the walls, floors, ceilings and other stationary,
potentially occluding elements of the environments. This
geometry is then submitted to a preprocess that constructs a
BSP tree from this geometry using conventional BSP algo-
rithms. Typically a second preprocess is then invoked to cal-
culate the cell-to-cell PVS for each leaf cell of the BSP tree
using the previously described through-portal visibility
method. The PVS for a particular leaf cell is typically stored
as an efficient compressed bit vector which indicates the other
the bsp leaf cells that are visible from the source cell.

During runtime display the specific leaf cell containing the
current viewpoint, the viewpoint leaf cell, is established using
a simple BSP algorithm. The PVS for the viewpoint leaf cell
is read and the corresponding (potentially visible) leaf cells
are then hierarchically culled with respect to the current view
frustum using standard hierarchical view frustum culling
methods. Those graphic primitives from PVS leaf cells that
are within the view frustum are then sent to the hardware
graphics pipeline. During runtime display various from-point
occlusion culling methods such as from-point portal and anti-
portal culling may also be employed to further limit which
primitives are sent to the hardware graphics pipeline. Never-
theless the precomputed PVS is typically the working set of
primitives on which runtime from-point culling is performed.
Consequently the precomputed PVS is central to the runtime
performance not only because its own occlusion-culling costs
have already been paid in a preprocess but also because an
accurate PVS can lower the cost of runtime from-point occlu-
sion culling methods by limiting the amount of geometry on
which they must operate.

Although the BSP/portal-sequence method of PVS pre-
computation is widely employed to enhance the performance
of computer games and similar applications current imple-
mentations of the method have a number of shortcomings. As
previously discussed, the use of a linearized approximation of
the portal sequence antipentumbra can cause the method to
significantly overestimate the size of the PVS.

Another limitation of the method is that it requires con-
struction of a BSP from the potentially occluding geometry of
the model (an autopartition). Spatial subdivision using a BSP
tree which is well-balanced and space-efficient is known to be
an inherently difficult problem (see pg. 96 TELLER (1992)).
The best bounds on time complexity for tree construction
tends is O(n®) for a tree of worst case size O(n®). With well
chosen splitting heuristics BSPs of reasonable size can be
produced for models of moderate complexity. However for

US 9,171,396 B2

7

larger models these time and space cost functions can make
practical BSP construction and storage prohibitive. Conse-
quently when employing the method users must often limit
the number of primitives used to construct the BSP. Complex
objects which contain large numbers of non-coplanar primi-
tives are typically deliberately excluded as potential occlud-
ers because they would increase the time and space cost of
BSP construction. Such objects are typically managed sepa-
rately by the method which requires that the user (i.e. the level
designer) designate the objects as “detail” objects which do
not contribute BSP planes and do not function as occluders
during the PVS precomputation. These detail objects can still
function as potential occludees in the method. If a detail
object is completely contained within a PV leaf cell and the
leafcell is determined not to be part of the cell-to-cell PVS for
a given viewpoint leaf cell then the detail object can be
excluded from the PVS of the viewpoint leaf cell. Neverthe-
less by eliminating objects from consideration as potential
occluders based on their geometric complexity instead of
their occluding potential, the method can significantly over-
estimate the actual from-region PVS.

A related weakness of the BSP/portal-sequence method is
that it can perform poorly for modeled environments other
than architectural interiors. When applied to architectural
interior models the method tends to naturally construct BSP
leaf cells that correspond to rooms having portals which
correspond to doors or windows. In contrast for open, outdoor
scenes as well as many complex interior scenes visibility is
less clearly governed by a closed-cell, open-portal relation-
ship. In such scenes visibility is often limited primarily by
freestanding occluders not associated with a relatively closed
cell; or by the aggregation or fusion of multiple smaller
occluders. The BSP/portal-sequence does not effectively
account for the fusion of individual freestanding occluders
when culling occluded geometry. Applying the BSP/portal-
sequence method to such scenes can produce a very large BSP
and very long portal sequences. Under these conditions the
method tends to take a very long time to compute PVS’s that
are highly overestimated and inefficient at runtime. Applica-
tions that employ the BSP/portal-sequence method will typi-
cally avoid PVS precomputation for such scenes and may
instead rely on from-point occlusion culling methods such as
from-point portal culling, such as the dynamic antiportal
method used by Valve Software’s Source® game engine,
which must be computed during runtime.

Teller’s initial description of the portal sequence method
included a technique of computing cell-to-primitive PVS by
intersecting the linearized antipenumbra with individual
primitives in bsp leaf cells. In practice this technique has not
been adopted by Carmack or other existing systems in part
because the storage costs of a cell-to-primitive PVS would be
much higher than a cell-to-cell PVS.

Despite the variety of approximations that have been
employed to simplify and expedite BSP/portal-sequence vis-
ibility preprocessing, it remains a computationally expensive
process. Because the BSP/portal-sequence method overesti-
mates the PVS, completely occluded graphic primitives may
undergo expensive runtime processing despite being invisible
in the scene. The computational cost of processing occluded
primitives during runtime may be paid by the CPU, the GPU,
or both. CPU processing may include view frustum culling,
from-point portal culling, from-point anti-portal culling, as
well as the CPU cost of batch primitive submission to the
GPU. On the GPU side, occluded primitives may undergo
both vertex processing and rasterization phases of the hard-
ware graphics pipeline. One measure of the efficiency of
precomputed occlusion culling is the degree of overdraw that

25

30

35

40

45

50

55

60

65

8

occurs during runtime. Overdraw may occur during rasteriza-
tion whenever a rasterized fragment must be compared to a
non-empty entry in the Z-buffer. This non-empty entry in the
Z-buffer resulted from earlier rasterization of a fragment at
the same image-space coordinates. The earlier entry may be
in front of or behind (occluded by) the current fragment. The
situation must be resolved by a Z-buffer read and compare
operation. The earlier entry is overwritten if its Z value is
more distant than that of the current fragment. As previously
described, modern hardware Z-buffer systems can sometimes
prevent actual shading of occluded fragments using an “early-
7 rejection test which may include a hierarchical Z compare
mechanism. Nevertheless completely occluded primitives
that make it to the rasterization stage of the graphics pipeline
will, at a minimum, have each of their rasterized fragments
compared to a corresponding Z-buffer and/or its hierarchical
equivalent. We adopt the convention that overdraw includes
any “overlap” of fragments in image-space which will at least
require a Z-compare operation.

When the BSP/portal-sequence method was applied to the
architectural interiors of the game Quake it was found that an
average overdraw of 50% but ranging up to 150% in worst
cases. (Abrash 1997, pg. 1189, Abrash, Michael “Michael
Abrash’s Graphics Programming Black Book Special Edi-
tion”, 1997 The Corilois Group, the entirety of which is
incorporated herein by reference). This level of overdraw was
encountered for relatively simple models which have a maxi-
mum depth complexity on the order of 10 and in which the
visible depth complexity is often intentionally minimized by
carefully selecting the position of occluding walls and por-
tals.

A later implementation of Carmack’s visibility precompu-
tation method is employed in ID Software’s Quake III com-
puter game. In this game the simulated environments have
significantly more geometric detail than the original Quake
game (approximately 40,000 polygons per level). As in the
original game, levels are carefully designed to contain a vari-
ety of obstacles including right-angled hallways, walls
behind doorways, stairways with U-turns, and other visibility
barriers. These obstacles are intentionally arranged to limit
visibility within the model and thereby reduce the size of the
PVS for the model’s visibility cells. Even with these visibility
barriers the approximate cell-to-cell portal visibility calcula-
tion results in considerable overdraw during runtime display.
When applied to Quake III levels the BSP/portal-sequence
precomputation method generally results in typical over-
draws of 80% with worst cases exceeding 300%. These
results are obtained by measuring depth complexity during
run-time walkthrough of typical Quake III levels using
the —dc command line option. During these measurements
care must be taken to control for the effect of multipass
shading.

Thus even when the BSP/portal-sequence method is
applied to modeled environments for which it is best suited, it
is a computationally expensive and relatively ineffective
method of from-region occlusion culling. Consequently more
recent work has focused on from-region occlusion culling
methods which can be applied to general scenes and which
produce a more precise PVS at a reasonable computational
cost.

Early conservative methods of general from-region occlu-
sion culling were described in Cohen-Or et al. (1998) (Chry-
santhou, Yiorgos, Daniel Cohen-Or, and Dani Lischinski.
“Fast Approximate Quantitative Visibility for Complex
Scenes.” Proceedings of the Computer Graphics Interna-
tional 1998. Washington, D.C.: IEEE Computer Society,
1998. 220, the entirety of which is incorporated herein by
reference). In these methods, objects are culled only if they

US 9,171,396 B2

9

are occluded by a single, large, convex occluder. Unfortu-
nately the presence of large, convex occluders is rarely
encountered in actual applications.

More recently, methods of from-region visibility precom-
putation have been developed which attempt to account for
the combined occlusion of a collection of smaller occluders
(occluder fusion).

Durand et al. (2000) (Durand, Fredo, et al. “Conservative
Visibility Preprocessing using Extended Projections.” Pro-
ceedings of the 27th Annual Conference on Computer Graph-
ics and Interactive Techniques. Proc. of International Confer-
ence on Computer Graphics and Interactive Techniques. New
York: ACM Press/Wesley Publishing Co., 2000. 239-48, the
entirety of which is incorporated herein by reference) pro-
posed a method of from-region visibility precomputation that
employs a conservative, image-space representation of
occluders and occludees called the extended projection. In
this method a conservative, pixel based, representation of a
convex occluder is constructive by rasterizing the occluder
primitives from eight different viewpoints corresponding to
the vertices of the viewcell. The extended projection of the
convex occluder is the intersection of its projection from these
views. This intersection can be computed by rasterizing the
occluder into a hardware Z-buffer and stencil buffer data
structure, which together form the “extended depth buffer”.
Ocludees are conservatively represented as the union of the
projections of their bounding boxes from the same viewcell
vertices. Occludees are culled as invisible from the region if
they are completely covered by an occluder in the extended
depth buffer. The extended projections of multiple occluders
aggregate on the extended depth buffer, which accounts for
occluder fusion.

The method may use extended depth buffers corresponding
a single set of six planes which surround the entire environ-
ment. Alternatively, consecutive sets of surrounding planes at
increasing distances from the viewpoint cell can be
employed. In this case aggregated occluders on a near plane
can be reprojected, using a conservative convolution operator,
to subsequent planes. This “occlusion sweep” reprojection
approach is more effective in capturing the fusion of multiple,
small occluders at varying distances from the viewpoint cell.
This arrangement was used, for example, to account for
occluder aggregation in a forest scene of high depth complex-
ity.

The extended projection method employs a number of
approximations which result in overestimation of the PVS.
First, the size of potential occludees is always overestimated
since the method does not use the projection of the occludee
itself. Instead the bounding box of the occludee is projected.
In addition a second approximation, the bounding rectangle
of'this projection, is used to compute the extended projection
of the occludee. These consecutive approximations result in
an overestimate of the size of the occludee and consequently
reduce the precision of the PVS. Moreover, the requirement to
use occludee bounding boxes effectively limits the precision
of the method to producing to a cell-to-object (rather than
cell-to-primitive) PVS.

The extended projection method can directly rasterize only
convex occluders into the extended depth buffer. Concave
occluders must first be converted to a convex representation
by intersecting the concave occluder surface with the projec-
tion plane. This is an additional step requiring a object-space
calculation that, depending on the characteristics of the
occludee surface, may be computationally expensive. Inaddi-
tion, if the location of the projection plane is not ideal, the
intersection calculation can significantly underestimate the
actual occluding effect of the concave occluder.

35

40

45

55

10

Another approximation employed by the extended projec-
tion method is the technique for reprojecting an occluder
from one projection plane to a more distant one. The goal of
this reprojection is effectively to identify the umbra of a
planar occluder (with respect to a light source represented by
the viewcell) and find the intersection of this umbra with a
more distant plane. The extended projection method conser-
vatively estimates this intersection by convolving the image
of the occluder with an inverse image of rectangle that func-
tions as an overestimate of a light source formed by the
viewpoint cell. This technique can significantly underesti-
mate the umbra of occluders which are similar in size to the
viewpoint cell. By significantly underestimating the size of
reprojected occluders the method will tend to overestimate
the PVS.

A principal motivation of the extended projection method
is to detect occlusion caused by the combined effects of
multiple small occluders. Durand et al (2000). acknowledge
that the method only detects fusion between occluders where
the umbra (occluded region) of the occluders intersect and
when this intersection volume itself intersects one of the
arbitrarily chosen parallel projecting planes. Since relatively
few projection planes are used in the occlusion sweep imple-
mentation, the method can frequently fail to detect occluder
fusion caused by umbra which intersect outside the vicinity of
a projection plane.

Schaufler et al. (2000) (Schaufler, Gernot, et al. “Conser-
vative Volumetric Visibility with Occluder Fusion.” Proceed-
ings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques. New York: ACM Press/Wesley
Publishing Co., 2000. 229-38, the entirety of which is incor-
porated herein by reference) developed a method of precom-
puting a conservative, from-region PVS that requires a volu-
metric representation of the modeled environment. In this
method modeled objects must be bounded by closed surfaces.
The closed bounding surface must produce a well defined
interior volume for each object. The interior volume of an
object is assumed to be opaque and is represented with convex
voxels that are generated by a volumetric decomposition of
the interior. The voxels act as occluders for the method.
Occlusion is computed by finding a shaft which connects the
viewpoint cell and a voxel. The extension of this shaft is an
umbra within which all geometry is occluded. The method
accounts for occluder fusion by combining adjacent voxels
and by combining voxels and adjacent regions of occluded
space. The implementation presented calculates a cell-to-cell
PVS for 2D and 2.5D environments (e.g. cities modeled as
heightfields). While the extension to full 3D environments is
discussed by the authors, the computational and storage costs
of a detailed volumetric representation of a 3D model are a
real limitation of the method. While the volumetric visibility
method of Schaufler et al. does not require occluders to be
convex it does require them to be well-formed manifolds with
identifiable solid (water-tight) interior volumes. This allows
an individual occluder to be conservatively approximated by
a box-shaped structure that is completely within the interior
of' the original occluder. This approximate occluder is gener-
ated by decomposing the interior into voxels and recombining
the voxels in a process of blocker extension which attempts to
maximize the size of the contained box-shaped approximate
occluder. The method requires that the approximate occluders
retain a box shape to facilitate the construction of the shaft
used to determine occlusion. A principal limitation of this
approach is that many occluders are poorly approximated by
a contained box-shaped structure. In particular, concave
objects or objects with topological holes (manifolds with
genus greater than zero) present an ambiguous case to the

US 9,171,396 B2

11

blocker extension algorithm and significantly underestimate
the occlusion caused by the object. A 2.5D implementation of
the method described by Schaufler etal. to compute a PVS for
viewcells in a city model was tested using primarily convex
objects of genus zero. These objects tend to be reasonably
well approximated using a box-shaped interior occluder. For
more realistic models containing concave elements and holes
(e.g. doors and windows) the method would be less effective
in approximating occluders and consequently less efficient in
culling occluded geometry.

The volumetric visibility method detects occluder fusion in
cases where the linearized umbra of the occluders intersect.
However, as with individual occluders, the blocker extension
algorithm ultimately produces a simplified box-shaped
approximation to the aggregate region of occlusion that can
significantly underestimate the effect of occluder fusion.

Both the extended projection method and the volumetric
visibility method effectively treat the viewcell as an area light
source and respectively employ image-space and object-
space techniques to compute a conservative, linearized
approximation to the umbrae of polygon meshes. Algorithms
for computing the shadow boundaries (umbra and penumbra)
of a polygonal area light source, Nishita, Nakame (1985)
(Nishita, Tomoyuki, Isao Okamura, and Fihachiro Nakamae.
“Shading Models for Point and Linear Sources.” ACM Trans-
actions on Graphics (TOG)4.2 (1985): 124-46, the entirety of
which is incorporated herein by reference) and Chin-Finer
(1992) (Chin, Norman, and Steven Feiner. “Fast Object-Pre-
cision Shadow Generation for Area Light Sources Using BSP
Trees.” Proceedings of the 1992 Symposium on Interactive
3D Graphics. Proc. of Symposium on Interactive 3D Graph-
ics, 1992, Cambridge, Mass. New York: Association for Com-
puting Machinery, 1992, the entirety of which is incorporated
herein by reference) have also employed a conservative, lin-
earized umbra boundaries.

These shadow boundary methods employ only the linear
umbral event surfaces that form between a single convex
polygonal light source and single convex polygons. The use
of'these methods on non-convex polygon meshes for instance
would result in a discontinuous umbral event surface that
would not accurately represent an umbral volume. Conse-
quently their utility is practically limited to very simple mod-
els.

In 1992 Heckbert (Heckbert, P “Discontinuity Meshing for
Radiosity”, Third Eurographics Workshop on Rendering,
Bristol, UK, May 1992, pp 203-216, the entirety of which is
incorporated herein by reference) used a different approach
called incomplete discontinuity meshing to construct the
exact linear visibility event surfaces (umbral and penumbral)
cast by simple polygon models from an area light source. In
this technique the linear event surfaces, or wedges, are
formed between the edges of the light source and the vertices
of the occluder and between the vertices of the light source
and the edges of the occluders. The wedges are intersected
with all of the model polygons and the segments of the poly-
gons that are actually visible on the wedge are subsequently
determined using a 2D version of the Weiler- Atherton object-
space from-point visibility algorithm (Weiler, Kevin, and
Peter Atherton. “Hidden Surface Removal using Polygon
Area Sorting.” Proceedings of the 4th Annual Conference on
Computer Graphics and Interactive Techniques. New York:
ACM, 1977. 214-22, the entirety of which is incorporated
herein by reference).

The primary motivation of the discontinuity meshing
method is to identify discontinuity boundaries within the
penumbra. These boundaries can be used to increase the
precision of illumination calculations within the penumbra.

10

30

35

40

45

12

Unfortunately because the incomplete discontinuity meshing
method constructs only the exact linear umbral event wedges,
it generally fails to produce the complete, continuous umbral
event surface. This is because for all but the simplest models,
the continuous umbral event surface (for example incident on
the silhouette contour of a polygon mesh) is formed by both
planar and quadric visibility event surfaces. Consequently the
method of incomplete discontinuity meshing is unsuited to
identify mesh polygon or mesh polygon fragments that are
visible or occluded from an area light source (or viewcell).

In the prior-art method of incomplete discontinuity mesh-
ing, all of the visibility event surfaces are formed by a vertex
and an edge. FIG. 53 is from the prior-art method of incom-
plete discontinuity meshing by Heckbert. The figure shows an
exact linear visibility event surface, or wedge, as the shaded
triangular structure WEDGE R. The wedge labeled WEDGE
R is incident on an edge e of a polygon and also incident on a
vertex v, which may be a vertex of a light source. In the
method of incomplete discontinuity meshing, the linear event
surfaces are not defined over segments of an edge which are
not visible from the vertex. In the case of FIG. 53, WEDGE R
is not defined over the segment of edge e labeled GAP E,
because polygon O occludes vertex v from GAP E. Because
the wedge is not defined over this segment, the wedge’s
intersection with polygon P causes a corresponding gap
between SEG1 and SEG2. If wedge R was an umbral wedge,
its intersection with P would produce an incomplete umbral
boundary. As a result of these gaps, the linear visibility event
wedges constructed by the method of incomplete discontinu-
ity meshing cannot be used alone to define umbral boundaries
(or from-region visibility boundaries).

Drettakis and Fiume (1994) (Drettakis, George, and
Eugene Fiume. “A Fast Shadow Algorithm for Area Light
Sources Using Backprojection.” Proceedings of the 21st
Annual Conference on Computer Graphics and Interactive
Techniques. New York: ACM, 1994. 223-30, the entirety of
which is incorporated herein by reference) completely char-
acterized the visibility event surfaces that arise between a
polygonal light source and objects in a polyhedral environ-
ment. In the method, called complete discontinuity meshing,
both umbral and penumbral event surfaces are identified and
intersected with model polygons. These intersections parti-
tion the model geometry into a “complete discontinuity
mesh” such that in each face the view of the light source is
topologically equivalent. The discontinuity mesh is shown to
be a useful data structure for computing global illumination
within the penumbra.

In the complete discontinuity meshing method four types
of event surfaces between an area light source (called the
“emitter”’) and polyhedral mesh objects are identified. Two of
these event surfaces are planar and two are quadrics.

The first type of visibility event surface identified is formed
between a vertex or edge of the emitter and specific edges or
vertices of the polyhedral model. These polygons are called
an emitter-VE or (E-EV) wedges. The authors emphasize that
not all vertices of a polyhedral mesh support an E-EV wedge.
Only those mesh edges which are from-point silhouette edges
(which they call “shadow edges”) for any point on the emitter
surface will support a wedge. By defining “from-region sil-
houette edge” in this way all mesh edges which support an
umbral or penumbral E-EV wedge are identified.

The other type of planar visibility event surface employed
in complete discontinuity meshing is the Non-emitter-EV
(NonE-EV) wedge. This type of wedge is potentially formed
between any edge of the polyhedral mesh and any other edge
such that the formed wedge intersects the emitter. For any
edge of the polyhedral mesh the supported NonE-EV wedges

US 9,171,396 B2

13

occur only in a shaft formed between the edge and the emitter.
This fact is used to construct identify the NonE-EV wedges.

A third type of visibility event surface is a quadric formed
from an edge of the emitter and two edges of the polyhedral
meshes. This is called a Emitter-EEE event or E_EEE surface.
Such a surface is identified wherever two non-adjacent skew
edges of the discontinuity mesh intersect. [This intersection
actually corresponds to the intersection of a planar wedge
with a from-region silhouette edge to form a compound sil-
houette contour]. The continuous visibility event surface at
this point is a quadric surface.

The fourth and final type of visibility event surface formed
between an area emitter and polyhedral mesh objects is the
NonE-EEE. This is a quadric event surface formed between
three skew edges of the polyhedral mesh such that the result-
ing quadric intersects the viewcell.

In the present specification the classification of from-re-
gion visibility event surfaces based on Drettakis and Fuime
(1994) is adopted with some modification of the nomencla-
ture to accommodate further subclassification. Table Ia
includes the four types of visibility event surfaces originally
proposed by Drettakis and Fuime (1994), renamed for clarity.

TABLE Ia

Prior Art Nomenclature of From-Region Visibility Event Surfaces

Visibilty Event Surface Drettakis et al. Naming

Planar Event Surface Containing a Feature of
the Emmitter/Viewcell/Source

Planar Event Surface Not Containing a
Feature of the Emitter/Viewcell/Source
Quadric Event Surface Containing a Feature
of the Emitter/Viewcell/Source

Quadric Event Surface Not Containing a
Feature of the Emitter/Viewcell/Source

E-EV (Emitter-Edge
Vertex)

NonE-EV
Emitter-EEE, E_EE

Non-EmitterEEE

Any of the four types of visibility event surfaces may
ultimately contribute to the actual from-emitter (from-region)
umbral boundary which separates the volume of space that is
occluded from all points on the emitter from the volume of
space visible from any point on the emitter. Unfortunately,
using existing discontinuity mesh methods there is no a-priori
way to determine which event surfaces will contribute to this
umbral boundary that defines from-region visibility. Conse-
quently, in order to use discontinuity meshing methods to
identify the conservative, from-region umbral visibility event
boundaries, all visibility event surfaces would first have to be
generated and the resulting discontinuity mesh would have to
be post-processed to determine which of the event surface-
mesh polygon intersections represent true from-region umbel
boundaries.

Several other problems limit the use of discontinuity mesh-
ing methods to compute conservative from-region visibility.
The quadric event surfaces make a robust implementation of
the event surface casting difficult. Event surfacing casting is
required to find visible quadratic curve segments visible from
the emitter edge (in the case of Emitter-EEE wedge). This
on-wedge visibility is typically solved using a 2D implemen-
tation of Weiler-Atherton visibility algorithm which is diffi-
cult to implement robustly when using quadric surfaces.

As previously discussed, if the quadric surfaces are simply
omitted (as in the method of incomplete discontinuity mesh-
ing) then continuous from-region umbral surfaces are not
guaranteed, making determination of the from-region visible
mesh polygons impossible.

Another important limitation of conventional discontinuity
meshing methods is that they do not exhibit output-sensitive

20

25

30

35

40

45

50

65

14

performance. This is because existing discontinuity meshing
algorithms begin by generating all visibility event surfaces on
all (from-region) silhouette edges of the polyhedreal meshes.
This includes silhouette edges that are actually occluded from
the emitter/source. These event surfaces are then intersected
with potentially each polygon of the polyhedral meshes, and
the on-wedge visible segments are subsequently identified,
using 2D Weiler-Atherton visibility, as a post-process. Since
there is no depth-prioritization at any stage of theses algo-
rithms they perform very poorly in densely occluded environ-
ments, where the majority of the boundaries generated would
be inside the conservative from-region umbral boundary and
therefore not contribute to the from-region visibility solution.

As shown later in this specification, the present method of
visibility map construction using conservative linearized
umbral event surfaces generated using an output-sensitive
algorithm addresses many of the limitations of existing dis-
continuity meshing methods when applied to the problem of
conservative from-region visibility.

Using the classification of from-region visibility event sur-
faces described by Drettakis and Fiume (1994) it is clear that
the volumetric visibility method (Schauffler 2000) employs
only E-EV surfaces to represent umbra boundaries. The
extended projection method (as well as other projective meth-
ods) also implicitly use E-EV umbra boundaries.

A number of image-space techniques of conservative
from-region visibility precomputation employ “shrunk
occluders” to conservatively approximate visibility from a
region using visibility from a single point in the region. The
method of Wonka et al. (2000) (Wonka, Peter, Michael Wim-
mer, and Dieter Schmalstieg. “Visibility Preprocessing with
Occluder Fusion for Urban Walkthroughs.” Proceedings of
the Eurographics Workshop on Rendering Techniques 2000.
London: Springer-Verlag, 2000.71-82., the entirety of which
is incorporated herein by reference) uses this approach to
conservatively compute visibility from a region surrounding
a viewpoint placed on the surface of a viewcell. Using mul-
tiple viewpoints placed on the surface of the viewcell, the
visibility from the viewcell is computed as the combined
visibility from the points. The distance between the view-
points determines the magnitude of occluder shrinkage that
must be applied to insure a conservative result. Since this
method does sample visibility at multiple locations on the
viewcell it does not a priori assume that all unoccluded ele-
ments are completely visible from the entire viewcell

In contrast to many of the previously described methods
(including volumetric visibility and extended projection), the
Wonka et al method does not assume that all unoccluded
elements are completely visible from everywhere on the
viewcell surface. Since it samples visibility from multiple
locations on the viewcell it can approximate a backprojection
which accounts for the partial occlusion of the viewcell from
the unoccluded elements. The authors refer to this as penum-
bra effects, since elements in the penumbra of the viewcell/
lightsource may give rise to planar (NonE-EV) umbra bound-
aries as well as quadric umbra boundaries (Emitter-EEE and
Non-Emitter-EEE surfaces) that are more precise than the
E-EV boundaries generated by assuming that the entire view-
cell is visible from unoccluded elements. An implementation
of the method is presented for 2.5D models in which the
viewcells are rectangles. This greatly reduces the complexity
of occluder shrinkage process and substantially reduces the
number of viewpoint samples required compared to a full 3D
implementation. Unfortunately, because the implementation
is limited to 2.5D models it cannot be employed in most
walkthrough applications.

US 9,171,396 B2

15

Another method of visibility precomputation which
employs “shrunk occluders” to approximate from-viewcell
visibility using the visibility from a single point within the
viewcell is described by Chhugani et al. (2005) (Chhugani,
Jatin, et al. “vLOD: High-Fidelity Walkthrough of Large
Virtual Environments.” /EFE Transactions on Visualization
and Computer Graphics 11.1 (2005): 35-47, the entirety of
which is incorporated herein by reference). This method
employs a combination object-space and image-space
approaches. In object-space the “supporting planes tangential
to the viewcell and an object” are constructed. A viewpoint
contained within these supporting planes is selected and for
each supporting plane, an offset plane passing through the
viewpoint and parallel to the original plane is constructed.
According to the authors the intersection of the positive half-
spaces of these offset planes comprises a frustum that is
within the actual umbra of the original object. For each object
polygon that generated a supporting plane, the shrinkage of
the polygon is determined by the offset of the corresponding
polygon to the chosen viewpoint. Occlusion behind an
occluder object is determined by rendering the shrunk version
from the viewpoint and then drawing the occludees using the
occlusion query extension of the depth buffer. The query
returns zero for occludees that are not visible. The method
performs limited occluder fusion by rendering the shrunk
occluders prior to occludees. The same viewpoint must be
used to generate and render all shrunk occluders. This view-
point must lie in the frusta of all the occluders. The location of
the viewpoint is selected to maximize the sum of the volumes
of the shrunk frusta using a convex quadratic optimization to
achieve a local minimum solution.

The precision of the shrunk occluders is largely determined
by the size and distribution of occluders being considered.
Consequently the precision is not easily controlled in this
method.

While the method admits non-convex occluders, including
individual polygons and connected polygon meshes, it does
not accommodate occluders that have holes. This is because
the method depends upon each occludee having a single
polyline “boundary” which is actually a type of from-region
silhouette contour. This is a significant limitation since some
large polygon meshes (e.g. buildings) which generally pro-
duce significant from-region occlusion also have multiple
topological holes (e.g. doors and windows).

From the preceeding analysis it is clear that many existing
methods of PVS precomputation employ conservative, lin-
earized approximations to umbral boundaries based on
simple E-EV event surfaces (e.g. extended projection, volu-
metric visibility) which assume that unoccluded elements are
visible from everywhere on the viewcell (i.e. that the entire
viewcell is visible from the unoccluded element).

Although existing primal-space methods of from-region
visibility precomputation do not employ exact, quadric vis-
ibility event boundaries; other visibility applications do com-
pute quadric visibility event surfaces in the primal-space. One
of these applications, the Visibility Skeleton Durand (1997),
is a data structure for answering global visibility queries. The
other application, discontinuity meshing, is a method of com-
puting illumination in the presence of area light sources. The
discontinuity meshing method will be examined first.

As previously described, in the complete discontinuity
meshing method of Drettakis and Fuime (1994), all of the
visibility event surfaces arising between a polygonal light
source and a polyhedral model are identified and intersected
with model’s polygons. These intersections comprise the
“complete discontinuity mesh” of the model with respect to
the source. The discontinuity mesh partitions the model

10

15

20

25

30

35

40

45

50

55

60

65

16

geometry into a mesh of faces, such that in each face the view
of the source is topologically equivalent. The complete dis-
continuity mesh is a useful data structure for computing glo-
bal illumination near umbra and penumbra boundaries.

In the complete discontinuity meshing method four types
of event surfaces are identified (see Table Ia and Ib). Two of
these event surfaces are planar and two are quadrics. The two
planar event surface types discussed previously, E-EV and
NonE-EV, are used by the conservative from-region visibility
event methods to conservatively contain the from-region
umbralboundary surfaces. In some cases these planar sur-
faces are actually components of the exact umbra boundary
formed by a silhouette edge and an a viewcell-as-lightsource.

The two types of quadric surfaces: Emitter-Edge-Edge-
Edge (Emitter-EEE or E_EE) and Non-Emitter-Edge-Edge-
Edge (Non-Emitter-EEE) are components of certain visibility
event surfaces between the area light source and model poly-
gons. For example, in some cases these quadric surfaces may
be components of the exact umbra boundary formed by a
silhouette edge and a viewcell-as-lightsource. In most cases
these event surfaces are components of the penumbra. The
discontinuity mesh methods describe techniques for identi-
fying all of the quadric event surfaces that arise between the
area light source and the model polygons.

For example in Drettakis and Fuime (1994) both Emitter-
EEE and Non-Emitter-EEE event surfaces can be identified
by forming a shaft between a generator edge and the convex
hull of the emitter polygon. Emitter-EEE event surfaces are
formed by the original edge, an edge of the emitter, and other
edges in this shaft. Non-Emitter-EEE event surfaces are
formed by the original edge and pairs of non-parallel edges in
the shaft. Non-Emitter-EEE surfaces are those that intersect
the emitter polygon. In both cases the ruled quadric event
surface is identified using the parametric equation of the first
generator edge:

P=a+i(b-ay)

where a; and b, are the endpoints of e, .

The value of t for a point P, on the ruled quadric is found by
forming the two planes containing point Pand e, and P and e;.
The intersection of these two planes forms a line that is
intersected with e,

The valid interval of the ruled quadric on the generator
edge is found by computing t for the endpoints a, and b, of
edge e, and for the endpoints a; and b; of edge e;. The
intersection of the intervals is the valid region on the first
generator edge. (This parametric representation of the ruled
quadric was also suggested by Teller to represent the surfaces
in3D. However in Teller’s method the ruled quadric visibility
event surfaces are not actually identified in primal space.
Instead their delimiters, the extremal stabbing lines, are iden-
tified in 5D line space.)

In the discontinuity meshing method once a quadric sur-
face is identified by finding the valid intervals of its generator
edges, the coefficients of the corresponding quadric equation:

AX*+ By +C2+ Dyz+Exz+Fxy+Gx+Hy+Iz+J=0

are determined. The intersection of this quadric surface with
a model polygon is a quadratic curve. It is determined by
transforming the three generating edges such that the polygon
is embedded in the plane z=0. The quadratic curve is defined
by the coefficients of the corresponding quadric equation
minus all terms containing z. To generate the discontinuity
mesh elements the quadratic curve is intersected with the
edges of the model polygons and checked for visibility using
a line sweep visibility processing algorithm.

US 9,171,396 B2

17

In the discontinuity meshing method all visibility event
surfaces involving an area light source and model polygons
are identified. These visibility event surfaces include not only
the umbral and extremal penumbra boundaries but many
other event surfaces across which the topological view or
“aspect” of the light source from the model geometry
changes. In discontinuity meshing the visibility event sur-
faces are identified and intersected with the model polygons
but specific bounding volumes of these surfaces, such as the
umbra volume are not computed. These intersections in gen-
eral produce forth degree space curves which can be difficult
to solve robustly. Fortunately, the illumination calculations in
which the discontinuity mesh is employed do not require the
umbra volume to be represented.

The construction of the complete discontinuity mesh does
require the event surfaces to be intersected with the model
polygons, forming lines or quadratic curves on the surfaces of
the polygons. These intersections are performed by casting
the surfaces through the model. A regular grid-based spatial
subdivision data structure is used to limit the number inter-
sections performed. After all of the intersections are calcu-
lated a visibility step determines visible subsegments on the
wedge. Consequently the construction of the discontinuity
mesh is not output sensitive. and the cost of E-EV processing
is expected O(n?) in the number of polygons. Quadric sur-
faces are also processed by finding first finding all of the
quadratic curves formed by intersections of the quadric with
model polygons, visibility on the quadric is resolved by a line
sweep algorithm that is applied later, the cost of quadric
processing is O(n®) in the number of polygons.

Like the complete discontinuity mesh, the visibility skel-
eton (Durand et al 1997) (Durand, Fredo; Drettakis, George;
Puech, Calude; “The Visibility Skeleton: a Powerful and Effi-
cient Multi-Purpose Global Visibilty Tool, SIGGRAPH 1997
Proceedings, the entirety of which is incorporated herein by
reference) is a data structure that accounts for quadric visibil-
ity event boundaries using primal space methods. The visibil-
ity skeleton is a complete catalog of visibility events that arise
between edges in a polyhedral environment. In the visibility
skeleton the visibility information of a model is organized as
a graph structure in which the extremal stabbing lines are
nodes ofthe graph and the visibility event surfaces are the arcs
of the graph. The visibility skeleton can be used to answer
visibility queries in the scene such as those that arise during
global illumination calculations.

Unlike complete discontinuity meshing, the visibility skel-
eton avoids direct treatment of the line swaths that comprise
the quadric visibility event surfaces. Instead the skeleton is
constructed by directly computing only the extremal stabbing
lines which bound the event surfaces themselves and which
correspond to the nodes of the visibility skeleton graph struc-
ture.

Inthe general case of an extremal stabbing lines incident on
four edges (EEEE nodes) the nodes are identified using the
sets of tetrahedral wedges formed between the four edges. In
this method an extended tetrahedron is formed between two
of'the edges as shown in FIGS. 84, 86 and 8¢ of Durand et al
(1997). The figures mentioned in this paragraph refer to the
Durand et al (1997) paper. In FIG. 8a the extended tetrahe-
dron formed by edge ei and ej is shown. In FIG. 85 a third
edge ¢j is shown along with the segment of ej inside the
extended tetrahedron formed by ei and ¢j. [The component of
¢j inside this extended tetrahedron will form a quadric vis-
ibility event (EEE) surface with ei and ¢j.] In FIG. 8¢ a fourth
edge el is shown. This fourth edge el is similarly restricted by
the three other extended tetrahedra which it may intersect:
ekej, ekei, and ejei. The segment of el that is within all of these

10

15

20

25

30

35

40

45

50

55

60

65

18

tetrahedral wedges could form three quadric surfaces with the
other three edges. Only one line will actually intersect el and
the other lines. This is the extremal Emitter-EEE line or node
of the visibility skeleton involving these four edges. It is
found by a simple binary search on the restricted segment of
el. In this binary search an initial estimate of the intersection
point P on el is chosen. The plane formed by this point and ei
is then intersected with ej and e, giving two lines originating
at P. The estimated intersection point P on el is refined by
binary search until the angle between the two lines originating
at P approaches zero. This occurs when the lines are congru-
ent and therefore intersect ei, ej, ek, and el. The extremal lines
so identified are intersected with model polygons using ray
casting to determine if any scene polygons occlude the extre-
mal line between its generating edges. If the line is so
occluded no extremal stabbing line is recorded.

Other nodes of the visibility skeleton such as EVE, VEE,
and EEV nodes form the limits of planar visibility event
surfaces (eg. VE) and are also found by intersecting the rel-
evant edges with corresponding extended tetrahedra.

The extremal stabbing lines so identified are stored explic-
itly as the nodes of the visibility skeleton. The visibility event
surfaces (polygons or quadrics) that are bounded by these
lines are not directly computed but instead stored implicitly as
arcs in the graph. The component edges of the event surface
are inferred from the nodes connected to the corresponding
arc. Later use of the visibility skeleton for global visibility
querys, such as discontinuity meshing in the presence of an
area light source, may require the quadric surfaces to be
generated directly using, for example, the parametric form of
the quadric as described by Teller (1992).

From the preceeding analysis it is clear that both the dis-
continuity meshing and visibility skeleton methods include
primal space techniques for identifying planar and quadric
visibility event surfaces produced by area light sources. Both
effectively employ the extended tetrahedral wedge test to
identify quadric surfaces and the segments of the edge triples
that support them. Both methods produce all of the visibility
event surfaces between the relevant edges. Neither method is
structured to efficiently generate only the from-region umbral
boundary surfaces that are relevant in computing from-region
visibility.

Another approach to computing from-region visibility is to
transform the problem to line space and compute the umbra
boundary surfaces using Plucker coordinates.

As previously described, the method of Teller (1992)
developed the computational machinery necessary to com-
pute the exact planar and quadric elements of an antipenum-
bra boundary of a portal sequence. This method transformed
the problem to 5D line space.

The portal sequence is a significantly more restricted vis-
ibility problem than the general problem of visibility from an
area lightsource (or equivalently a viewcell) in the absence of
distinct portals. Moreover, to identify the quadric elements of
the antipenumbra boundary Teller had to transform the prob-
lem to line space using Plucker coordinates and perform
hyperplane intersections in SD. This transformation increases
the algorithmic complexity of the process and introduces
potential robustness issues that are not present when working
in the primal space.

Beginning in 2001 two groups of investigators Bittner
(2001) (J. Bittner and J. Pyrikryl. Exact Regional Visibility
using Line Space Partitioning. Tech. Rep. TR-186-2-01-06,
Institute of Computer Graphics and Algorithms, Vienna Uni-
versity of Technology, March 2001.) and Nierenstein (2002)
(Nirenstein, S., E. Blake, and J. Gain. “Exact From-Region
Visibility Culling” Proceedings of the 13th Eurographics

US 9,171,396 B2

19

Workshop on Rendering. Proc. of ACM International Confer-
ence Proceeding Series, Pisa, Italy, 2002. Vol. 28. Aire-la-
Ville: Eurographics Association, 2002.191-202., the entirety
of which is incorporated herein by reference) developed
methods to compute the exact viewcell to polygon PVS. Like
Teller’s exact antipenumbra calculation these methods
require a transformation of the problem to Plucker coordi-
nates and depend upon a combination of numerical tech-
niques including singular value decomposition, robust root
finding, and high-dimensional convex hull computations.
Unlike Teller’s approach these methods do not require an
autopartition of the model into a BSP tree with enumerated
portals.

In general, both of these exact methods, Niernstein (2002)
and Bittner (2001), are structured as a visibility query which
determines whether an unoccluded sightline exists between
two convex graphic primitives (i.e. polygons). One of the
tested polygons is a face of the viewcell, the other tested
polygon is a mesh polygon of the modeled environment. The
query determines if other polygons in the model, alone or in
combination, occlude all the sightlines between the tested
polygons. This occlusion query represents the linespace
between the polygons by a 5-D Euclidean space derived from
Plucker space. This mapping requires singular value matrix
decomposition. In a subsequent step the method employs
constructive solid geometry operations performed in 5
dimensional space. These processes, which form the basis of
the visibility query, have a high computational cost. More-
over, because the fundamental organization of the method
uses a polygon-to-polygon query, the cost on a naive imple-
mentation is O(n*'%) in the number of polygons (Nirenstein
2002).

The scalability of the method is improved over this worst-
case by employing trivial acceptance and trivial rejection
tests. Trivial acceptance of polygon-to-polygon visibility is
established using a polygon-to-polygon ray casting query. If
a ray originating at one test polygon reaches the other test
polygon without intersecting any intervening polygons in the
database then the visibility query can be trivially accepted.
While this query has a lower computational cost than the
exact Plucker space visibility query, its is itself a relatively
expensive test for trivial acceptance. Trivial rejection of clus-
ters of polygons can be accelerated by using a hierarchically
organized database. If a query determines that the bounding
box of an object is occluded with respect to a viewpoint cell
then all of the polygons contained by the bounding box are
also occluded. Furthermore, the method treats the occluded
bounding box itself as a simple “virtual occluder.” (Koltun et
al 2000) (Koltun, Vladen, Yiorgos Chrysanthou, and Daniel
Cohen-Or. “Virtual Occluders: An Efficient Intermediate
PVS Representation.” Proceedings of the Eurographics
Workshop on Rendering Techniques 2000. London: Springer-
Verlag, 2000. 59-70, the entirety of which is incorporated
herein by reference). As defined by Koltun et al. (2000), a
virtual occluder is not part of the original model geometry, but
still represents a set of blocked lines. If the bounding box ofan
object is occluded then it can be used as an occluder for any
geometry behind it. None of the polygons within the occluded
bounding box need be considered as occluder candidates, as
the bounding box itself is more than sufficient to test for
occlusion of objects behind it. By employing these virtual
occluders in conjunction with a front to back processing of
scene objects Nirenstein et al (2000). significantly improved
the scalability of the method from O(n*'%) to O('*®) for
some tested scenes. Nevertheless, the method was shown to
have a large constant computational overhead. For a densely
occluded forest scene consisting of 7.8 million triangles pre-

30

40

45

55

20

processing required 2 days 22 hrs on a dual Pentium IV 1.7
GHz multiprocessor. This compared to only 59 minutes pre-
processing the same database using the extended projection
method of Durand et al. implemented on a 200 MHz MIPS
R10000 uniprocessor with SGI Onyx2 graphics hardware.
The exact method culled an average of 99.12% of the geom-
etry compared to 95.5% culling achieved with the conserva-
tive extended projection method.

One reason for the exact method’s high computational cost
is that the polygon-to-polygon occlusion query treats the
occlusion caused by each polygon separately and does not
explicitly consider the connectivity relationships between
polygons to compute an aggregate occlusion. The exact
method accounts for the combined occlusion of connected
polygons only by the expensive 5-D constructive solid geom-
etry process in which each polygon in processed separately.
For this exact method the combined occlusion of connected
polygons is determined only by the separate subtraction of
individual 5-D polyhedra (representing the candidate occlud-
ing polygons) from a 5-D polytope (representing the cell-to-
polygon sightlines). In the case of a connected mesh, the
shared edges represent a trivial case of occluder fusion but for
the exact method the fusion of these occluders must be explic-
itly computed and represent a degenerate case for the algo-
rithm since the resulting polyhedra intersect exactly along the
shared edges. In this sense the Niernstein et al. (2002) method
completely neglects the important problem of identifying
those specific edges of the polygon model which potentially
support from-region visibility event surfaces (the potential
from-region silhouette edges) and instead conducts the vis-
ibility query using all polygon edges.

In a later implementation, Nirenstein et al (2005) (Niren-
stein, S., Haumont, D., Makinen, O., 4 Low Dimensioinal
Framework for Exact Polygon-to-Polygon Occlusion Que-
ries, Burographics Sysmposum on Rendering 2005, the
entirety of which is incorporated herein by reference)
addressed this shortcoming of the method by identifying
potential from-viewcell silhouette boundaries and construct-
ing blocker polyhedra in 5D only along these boundaries. The
definition of from-region silhouette edges employed in this
method is essentially the same as that used in the earlier
complete discontinuity meshing method of Drettakis et al.
(1994) Although one test-bed implementation using this
improvement accelerated the method by a factor of 30, the
method still has a high constant computational overhead.

Besides being computationally expensive, the exact
method is difficult to implement robustly. The singular value
decompositions, robust root finding, and higher dimensional
constructive solid geometry computations of the method tend
to be very sensitive to numerical tolerances and geometric
degeneracies.

Another shortcoming of the exact from-region method is
that current implementations generally do not identify and
remove occluded parts of partially occluded polygons. Cur-
rent implementations of the method employ a polygon-to-
polygon visibility query between the faces of the viewcell and
the model polygons. The query is specifically structured to
identify unoccluded regions between the tested polygon and
to terminate early if any such regions are detected. Such
implementations include an entire polygon in the PVS even if
only a small part of it is visible from the viewcell. Conse-
quently, although the PVS computed by these implementa-
tions may be the “exact” set of polygons visible from the
region; the PVS may considerably overestimate the exposed
surface area visible from the viewcell for large polygons. This
canresult in considerable overdraw at runtime. Modifying the
exact from-region implementations to determine unoccluded

US 9,171,396 B2

21

fragments would substantially increase the computational
cost and complexity of the implementation because: 1) the
benefit of early termination would be lost, and 2) the bound-
aries between unoccluded and occluded fragments are qua-
dratic.

Because these line-space methods compute the quadric
umbra boundaries between source and target polygon they
can provide an exact solution to this visibility query. In con-
trast, conservative methods of visibility precomputation
employ less precise linearized umbra boundaries either
explicitly (volumetric visibility) or implicitly (projective
methods). However since these conservative methods operate
in the primal space they are amenable to simpler, more robust
implementations than the line space methods which require
robust root finding and higher dimensional constructive solid
geometry.

In both the extended projection method and the volumetric
visibility method, as well as the exact from-region methods, a
PVS is computed for parallelepiped viewcells that comprise a
subdivision of navigable space. The use of parallelepiped
viewcells has several advantages over the general convex
polyhedral viewcells used by the BSP/portal sequence meth-
ods. The spatial subdivision defining the parallelepiped view-
cells can easily be arranged as a spatial hierarchy (e.g. k-d
tree) which facilitates a hierarchical approach to PVS deter-
mination. In this approach, used by both the extended projec-
tion and volumetric visibility methods, the PVS is determined
for a viewcell at a high level in the hierarchy and is used as a
working set to recursively determine the PVS of child view-
cells lower in the hierarchy.

Another advantage of parallelepiped cells is that they have
a simple cell adjacency relationship to neighboring cells. This
relationship was exploited in the extended projection imple-
mentation, Durand et al. (2000) to implement a delta-PVS
storage scheme. In this scheme the entire PV'S for a number of
key viewcells is stored. For most other viewcells, sets repre-
senting the differences of the PVS of adjacent viewcells are
stored. This storage scheme substantially reduces the storage
requirements for PVS data.

In the extended projection implementation the computed
PVS encodes conservative viewcell-to-scene-graph-cell vis-
ibility at a coarse level of granularity. For this approximate
solution the delta-PVS storage for 12,166 viewcells (repre-
senting Y12th of the street area of a city model comprising 6
million polygons required 60 MB storage. Extrapolated, the
storage of the delta-PVS data for the viewcells comprising all
of the streets would be 720 MB. In the run-time portion all
geometry is stored in main memory but the deltaPVS data is
fetched from disk.

Another from-region visibility method which employs a
delta-PVS storage scheme is the vlod method of Chhugani et
al. (2005) In this implementation the from-region visibility
solution provides a conservative viewcell-to-object PVS
using a variation of the “shrunk occluder” method.

The delta-PVS is a list of object Ids referring to newly
visible or newly invisible objects for a viewcell transition. In
contrast to the extended projection method, the vlod imple-
mentation does not require all model geometry to be stored in
main memory. Instead geometry is stored on disk and the
current and predicted viewpoint locations are used to guide a
speculative prefetch process which dynamically loads delta-
PVS data and model geometry data. The model geometry is
stored on disk using an object reordering scheme that reduces
the number of disk accesses by storing together objects on the
disk that tend to be fetched together. The delta-PVS data is

20

25

40

45

55

22

also stored on disk. For a powerplant model of 13 million
triangles and 500,000 viewcells, 7 GB is required to store the
delta-PVS object ids.

At runtime the vlod implementation allows real-time ren-
dering of models that are too large to be stored in main
memory. Since the models rendered in the vlod implementa-
tion are not textured, the method does not address the storage
and dynamic prefetch of texture information. In most modern
walkthrough applications such as games, the amount of tex-
ture information for a model is typically much greater than the
amount of geometry information.

The vlod system is an example of out-of-core, real-time
rendering system that uses geometry prefetch based on pre-
computed from-region visibility. An earlier example by
Funkhouser (Database Management for Interactive Display
of'Large Architectural Models, Proceedings of the conference
on Graphics interface *96 Toronto, Ontario, Canada Pages:
1-8 Year of Publication: 1996 ISBN: 0-9695338-5-3, the
entirety of which is incorporated herein by reference) of this
approach used geometry PVS data computed using the portal
sequence method. This implementation also used untextured
geometry and, like vlod, does not address the prefetch of
texture information.

Other out-of-core methods use geometry prefetch based on
a run-time, conservative, from-point visibility method (e.g.
prioritized layered projection or PLP) which is used to deter-
mine a conservative subset of the model visible from the
viewpoint IWALK, MMR). In one variation of this approach
the process of primitive reprojection is used to directly iden-
tify model geometry that becomes newly exposed as a result
of'viewpoint motion (U.S. Pat. No. 6,111,582 Jenkins). These
from-region visibility methods must be computed at runtime
and therefore contribute to the overall runtime computational
cost.

The goal of out-of-core rendering systems is to allow unin-
terrupted exploration of very large, detailed environments
that cannot fit in core memory. Implemented effectively, this
streaming approach can eliminate the frequent interruptions
caused by traditional loading schemes in which entire sec-
tions (e.g. levels) of the environment are loaded until the next
level is reached. Subdividing a complex 3D model into dis-
tinct “levels” drastically simplifies the loading and display of
the graphics information while it forces the user to experience
a series of disjoint locations, separated by load times that
often disrupt the coherence of the experience.

The available data transfer rate between secondary storage
and the core is a significant limiting factor for streaming
implementations (Brad Bulkley, “The Edge of the World”
Game Developer Magazine June/July 2006 pg. 19, the
entirety of which is incorporated herein by reference). A
delta-PVS storage scheme can substantially reduce the trans-
fer rate required to stream prefetched data. Current delta-PVS
implementations do not provide methods to manage texture
information. Moreover they employ coarse-grained cell-to-
object or cell-to-scenegraph-cell PVS data that is computed
using imprecise from-region visibility computations which
results in overestimated PVS/delta-PVS data. If the size of the
delta-PVS data causes the prefetch process to exceed the
available transfer rate between secondary storage and core
memory then visibility errors can result.

A from-region visibility precomputation method capable
of determining occluded polygon fragments and textures
could produce a more precise cell-to-polygon PVS/delta-
PVS than existing methods. This would reduce the transfer
rate required to support streaming prefetch and also enhance
the performance of the display hardware by reducing over-
draw.

US 9,171,396 B2

23
CONCLUSIONS OF BACKGROUND

From the preceding analysis of the prior art it is clear that
existing methods of from-region visibility precomputation
use either, a) imprecise visibility event boundaries which
produce imprecise PVS solutions, or b) exact visibility event
surfaces which must be computed in five dimensional line
space. Such line space computations incur high computa-
tional cost and algorithmic complexity and are difficult to
implement robustly. Moreover, for a single collection of poly-
hedral objects, some exact from-region visibility event sur-
faces are well approximated by simpler, linearized extremal
umbra boundaries; while others are not. This makes exact
approaches overly sensitive to detailed input in the sense that
in some regions of a typical polyhedral model much compu-
tation can be expended to compute a very small amount of
occlusion.

Consequently a general method of PVS determination that
identifies conservative linearized umbral event surfaces in the
primal space; estimates the deviation of these surfaces from
the exact event surfaces, and adaptively refines these surfaces
to more precisely approximate the exact surfaces, would
enable from-region visibility precomputation with improved
precision and reduced computational cost compared to exist-
ing methods.

Such a practical method of precision-controlled PVS deter-
mination could be used in conjunction with delta-PVS and
intermediate representation schemes which reduce storage
costs and facilitate visibility-based streaming prefetch. This
visibility-based streaming prefetch method would allow the
user to quickly begin interacting with a massive textured 3D
model because initially only the geometry, texture, and other
graphic elements visible in the vicinity of the user’s initial
location would be delivered. This initial data is typically a
small fraction of the entire graphical database for the modeled
environment. This method would significantly decrease the
waiting time for interactivity when compared to existing
methods, such as MPEG-4 part 11 (VRML or X3D), which do
not specity an efficient, visibility-based prefetch streaming
approach. Such existing methods typically either require the
entire database to be downloaded before interactivity begins
or, alternatively, are subject to visibility errors (e.g., the sud-
den appearance of objects) during user navigation.

SUMMARY OF THE INVENTION

The present embodiments specify methods of further
reducing the bandwidth required to deliver a visibility event
data stream. In an exemplary embodiment, bandwidth
requirement is further reduced by employing, in the visibility
event codec, a method of: 1) precomputing or encoding the
from-region visibility of procedurally generated objects, 2)
interactively delivering procedural visibility information
from a visibility event server to a visibility event client, and 3)
generating newly potentially visible portions of procedurally
generated objects at runtime on the visibility event client
using the stored procedural visibility information.

The present embodiments also specify methods which
enable a user to easily control a visibility event data stream
conveying entertainment, advertising or tactical 3D content.
In an exemplary embodiment, a visibility event client device
receives a main visibility event data stream conveying inter-
active entertainment content and a second visibility event
stream, which is integrated and synchronized with the main
visibility event data stream according to the specification of
PCT patent application PCT/US2011/051403. In the present
embodiments includes methods which allow a user of the

20

25

40

45

50

24

visibility event client device to turn off the second visibility
event data stream without affecting the content or display of
the main visibility event data stream.

The present embodiments also include methods which
enable a user to indicate a selection of a graphical object
conveyed by a visibility event data stream, for example an
advertising or cash store object, without having to target the
information with a mouse, game controller joystick or other
pointing device.

In exemplary embodiments, a computer-implemented
method includes determining, using a processor, a graphical
object visible from a view region in a computer generated
modeled environment displayed on a client computing
device. The method further includes determining, using the
processor, one or more parameters defining the graphical
object visible from the view region. The method further
includes transmitting the determined one or more parameters
to the client computing device that uses the determined one or
more parameters to generate and display the graphical object
in the computer generated modeled environment.

In exemplary embodiments, the determined one or more
parameters include a minimum value and a maximum value
that define the graphical object visible from the view region.

In exemplary embodiments, the graphical object is a ren-
derable surface.

In exemplary embodiments, the graphical object visible
from the view region is not visible from another view region
adjacent to the view region from which the graphical object is
visible.

In exemplary embodiments, a computer-implemented
method is conducted on a client computing device. The
method includes displaying a first set of graphics information
visible from a first view region, the first set of graphics infor-
mation including graphics information representing objects
in a computer generated modeled environment. The method
further includes receiving, from a server, a second set of
graphics information upon determination that at least one
predetermined condition is satisfied, the second graphics
information visible from the second view region and not
visible from the first view region, the second set of graphics
information including graphics information representing
advertising information. The method further includes dis-
playing the second set of graphics information representing
the advertising information. The method further includes
determining an active period for the displayed advertising
information, the displayed advertising information provided
with a visual indication during the active period, the displayed
advertising information selectable only during the active
period. The method includes transmitting a selection result of
the displayed advertising information to the server.

In exemplary embodiments, movement within the com-
puter generated modeled environment is determined by user
input to the client computing device.

In exemplary embodiments, movement within the com-
puter generated modeled environment is determined by a
predetermined camera motion path.

In exemplary embodiments, the at least one predetermined
condition is satisfied upon determination that a likelihood that
a user viewpoint changes from the first view region to the
second view region is greater than a predetermined threshold.

In exemplary embodiments, the at least one predetermined
condition is satisfied upon determination that a likelihood that
a user viewpoint changes from the first view region to the
second view region is greater than a predetermined threshold
and that an available transmission bandwidth between a
server and the client computing device does not exceed a
predetermined bandwidth threshold.

US 9,171,396 B2

25

In exemplary embodiments, the displayed advertising
information is in the active period upon determination that a
user viewpoint is within a predetermined distance of the
displayed advertising information within the computer gen-
erated modeled environment.

In exemplary embodiments, the visual indication provided
during the active period is an object surrounding the dis-
played advertising information that highlights the displayed
advertising information.

In exemplary embodiments, during the active period, the
displayed advertising information is selectable by a single-
click activation of the client input device regardless of a
position of the user viewpoint in the second view region
within the computer generated modeled environment.

In exemplary embodiments, wherein the displayed adver-
tising information represents an object available for purchase,
the object usable within the computer generated modeled
environment upon purchase.

In exemplary embodiments, the method further includes
displaying an option to prevent display of the second set of
graphics information for an additional charge.

In exemplary embodiments, a fee assessed to a user of the
client computing device is reduced upon determination that
the user did not select the option to prevent reception of the
second set of graphics information.

In exemplary embodiments, a system includes a server that
determines a graphical object visible from a view region and
one or more parameters defining the graphical object visible
from the view region. The server further transmits the deter-
mined one or more parameters to a client computing device.
The system further includes the client computing device. The
client computing device includes a processor to generate the
graphical object using the determined one or more parameters
received from the server, and a display device to display the
generated graphical object within a computer generated mod-
eled environment.

In exemplary embodiments, the determined one or more
parameters include a minimum value and a maximum value
that define the graphical object visible from the view region.

In exemplary embodiments, the determined graphical
object visible from the view region is not visible from another
view region adjacent to the view region from which the
graphical object visible.

In exemplary embodiments, a system includes a server
having a memory to store a first set of graphics information
visible from a first view region and a second set of graphics
information visible from a second view region and not visible
from the first view region, the first set of graphics information
including graphics information representing objects ina com-
puter generated modeled environment, the second set of
graphics information including graphics information repre-
senting advertising information. The system further includes
a client computing device including a processor to determine
a likelihood that a user viewpoint changes from the first view
region to the second region. The client computing device
further includes a display device to display, upon determina-
tion that the likelihood is above a predetermined threshold,
the second the second set of graphics information including
the advertising information received from the server. The
processor further determines an active period for the dis-
played advertising information, where the displayed adver-
tising information is selectable only during the active period.
The display device further displays a visual indication during
the active period. The client computing device further trans-
mits a selection result of the displayed advertising informa-
tion to the server.

10

15

20

25

30

35

40

45

50

55

60

65

26

In exemplary embodiments, during the active period, the
displayed advertising information is selectable by a single-
click activation of a client input device regardless of a posi-
tion of the user viewpoint in the second view region within the
computer generated modeled environment.

In exemplary embodiments, the displayed advertising
information represents an object available for purchase, the
object usable within the computer generated modeled envi-
ronment upon purchase.

In exemplary embodiments, the display device is further
configured display an option to prevent display of the second
set of graphics information for an additional charge.

In exemplary embodiments, a non-transitory computer
readable storage medium having computer executable
instructions stored thereon, which when executed by a pro-
cessor in a server, causes the server to execute a method
including determining, using a processor, a graphical object
visible from a view region in a computer generated modeled
environment displayed on a client computing device. The
method further includes determining, using the processor,
one or more parameters defining the graphical object visible
from the view region. The method further includes transmit-
ting the determined one or more parameters to the client
computing device that uses the determined one or more
parameters to generate and display the graphical object in the
computer generated modeled environment.

In exemplary embodiments, a non-transitory computer
readable storage medium having computer executable
instructions stored thereon, which when executed by a pro-
cessor in a server, causes the server to execute a method
including displaying a first set of graphics information visible
from a first view region, the first set of graphics information
including graphics information representing objects ina com-
puter generated modeled environment. The method further
includes receiving, from a server, a second set of graphics
information upon determination that at least one predeter-
mined condition is satisfied, the second graphics information
visible from the second view region and not visible from the
first view region, the second set of graphics information
including graphics information representing advertising
information. The method further includes displaying the sec-
ond set of graphics information representing the advertising
information. The method further includes determining an
active period for the displayed advertising information, the
displayed advertising information provided with a visual
indication during the active period, the displayed advertising
information selectable only during the active period. The
method further includes transmitting a selection result of the
displayed advertising information to the server.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an exemplary flowchart showing a top-down
organization of constructing conservative linearized umbral
event surfaces or wedges at first-order silhouette mesh silhou-
ette edges or vertices using the pivot and sweep method. This
flowchart shows the degenerate case of parallel supporting
viewcell edge and silhouette edge being explicitly identified
and managed by constructing the corresponding SE-ME
wedge.

FIG. 2A is an exemplary diagram showing a viewcell and
two polygon meshes with first-order wedges incident on two
first-order silhouette edges.

FIG. 2B is an exemplary diagram showing a viewcell and
two polygon meshes with a from-silhouette edge (back-
projection) first-order wedge and the corresponding higher-
order from-viewcell (frontprojection) wedge.

US 9,171,396 B2

27

FIG. 3 is an exemplary flowchart showing the method of
identifying first-order from-region (in this case from-view-
cell) silhouette edges. FIG. 3 shows details of the step 110 in
FIG. 1.

FIG. 4A is an exemplary flowchart showing the method of
constructing a SV-ME supporting polygon incident on mesh
silhouette edge. FIG. 4A gives additional detail of the process
shown in step 116 of FIG. 1.

FIG. 4B shows a mesh object M1 a viewcell, and two
candidate supporting polygons with their respective pivot
angles.

FIG. 4C is an exemplary flow diagram showing a test for
determining if a polygon formed between a first-order silhou-
ette edge and a viewcell vertex is a supporting polygon.

FIG. 4D1 is an exemplary diagram showing two mesh
polygons having a consistent vertex ordering.

FIG. 4D2 is an exemplary diagram showing two mesh
polygons having an inconsistent vertex ordering.

FIG. 5A is an exemplary flowchart showing the method of
constructing SE-MV swept triangle incident on an inside
corner mesh silhouette vertex.

FIG. 5B is a continuation of FIG. 6A.

FIG. 5C is an exemplary flow diagram showing a test for
determining if a polygon formed between an inside-corner
first-order silhouette vertex and a viewcell edge is a support-
ing polygon.

FIG. 6A is an exemplary flowchart showing a method of
constructing SV-ME and SE-ME wedges from the corre-
sponding SV-ME and SE-ME supporting polygons.

FIG. 6B is an exemplary flowchart showing a method of
constructing SE-MV wedges from the corresponding SE-MV
supporting polygons.

FIG. 7A is an exemplary diagram showing a convex view-
cell and a non-convex polygon mesh, First-order, from-view-
cell silhouette edges of the mesh are shown in heavy lines,
perspective view looking in general direction from the view-
cell toward the polygon mesh.

FIG. 7B1 is an exemplary diagram showing the same
objects as FIG. 7B, but from a perspective view looking in a
general direction from the polygon mesh toward the viewcell.

FIG. 7B2 shows a different polygon mesh than the one
shown in FIG. 7B1 and shows an inside-corner edge of the
mesh which is not a first-order silhouette edge.

FIG.7C1 is an exemplary diagram showing the supporting
polygons for first-order silhouette edges A and B, perspective
view looking in a general direction from viewcell toward
mesh object.

FIG. 7C2 is an exemplary diagram showing the supporting
polygons for the first-order silhouette edges A and B and the
corresponding source-vertex mesh-edge (SV-ME) wedges,
perspective view looking in a general direction from viewcell
toward mesh object.

FIG. 7C3 is an exemplary diagram showing only the SV-
ME wedges formed from the extension of the edges of the
corresponding supporting polygons.

FIG. 7D1 is an exemplary diagram showing the same
objects as FIG. 7C but from a perspective view looking a
general direction from mesh object toward viewcell.

FIG. 7D2 is an exemplary diagram showing the same
objects as FIG. 7C1, but from a perspective view looking a
general direction from mesh object toward viewcell.

FIG. 7D3 is a diagram showing the same objects as FIG.
7C2 but from a perspective view looking a general direction
from mesh object toward viewcell.

5

10

15

20

25

30

35

40

45

50

55

60

65

28

FIG. 7D4 is a hidden-diagram which shows the same poly-
gon mesh and viewcell as FIG. 7D3 and shows two pivoted
wedges intersecting at an outside corner vertex of a first-order
silhouette contour.

FIG. 7D5 is a hidden-diagram which shows the same poly-
gon mesh and viewcell and restricted pivoted wedge as FIG.
7D4 but from a different perspective.

FIG. 8A1 is an exemplary diagram showing a swept tri-
angle (a SE-MV supporting polygon) on the inside corner
vertex shared by first-order silhouette edges labeled A and B.
Perspective view looking in the general direction from the
viewcell to the polygon mesh object.

FIG. 8A2 is an exemplary diagram showing a swept tri-
angle (a SE-MV supporting polygon) on the inside corner
vertex shared by first-order silhouette edges labeled A and B
and the corresponding SE-MV wedge. Perspective view
looking in the general direction from the viewcell to the
polygon mesh object.

FIG. 8A3 is an exemplary diagram showing the inside
corner vertex shared by first-order silhouette edges labeled A
and B and the corresponding SE-MV wedge. Perspective
view looking in the general direction from the viewcell to the
polygon mesh object.

FIG. 8A4 is an exemplary diagram showing the first-order
wedges incident on silhouette edges A and B, including two
SV-ME wedges and a single SE-MV wedge, all intersecting at
the inside corner silhouette vertex labeled ICSV. Perspective
view looking in the general direction from the viewcell to the
polygon mesh object

FIG. 8B1 is an exemplary diagram showing the same
objects as FIG. 8A1 but from a perspective view looking in a
general direction from mesh object toward viewcell.

FIG. 8B2 is an exemplary diagram showing the same
objects as FIG. 8 A2 but from a perspective view looking in a
general direction from mesh object toward viewcell.

FIG. 8B3 is an exemplary diagram showing the same
objects as FIG. 8A3 but from a perspective view looking in a
general direction from mesh object toward viewcell.

FIG. 8B4 is an exemplary diagram showing the first-order
wedges incident on silhouette edges A and B, including two
SV-ME wedges and a single SE-MV wedge, all intersecting at
the inside corner silhouette vertex labeled ICSV. Perspective
view looking in the general direction from the polygon mesh
object toward the viewcell.

FIG. 8C is an exemplary diagram showing the first-order
umbra boundary incident on the silhouette edges A and B,
perspective view looking in a general direction from viewcell
toward mesh object.

FIG. 9A is an exemplary diagram showing the first-order
umbra boundary incident on silhouette edges A and B con-
structed by the prior art method of Teller (1992) perspective
view looking in a general direction from viewcell toward
mesh object.

FIG. 9B is an exemplary diagram showing the same objects
as FIG. 9A but from a perspective view looking in a general
direction from mesh object toward viewcell.

FIG. 9Cis an exemplary diagram showing the more precise
umbra boundary produced by the present method as com-
pared to the umbra boundary produced by the prior art method
of Teller, perspective view looking in a general direction from
viewcell toward mesh object.

FIG. 9D is an exemplary diagram showing the same objects
as FIG. 9C but from a perspective view looking in a general
direction from mesh object toward viewcell.

FIG. 10A is an exemplary diagram showing some addi-
tional UBPs of the umbra boundary surface formed by the
intersection of UBPs for several adjacent first-order silhou-

US 9,171,396 B2

29

ette edges, perspective view looking in a general direction
from viewcell toward mesh object.

FIG. 10B is a view of the same polygon mesh as FIG. 10A
and the same viewcell, but showing a set of UBPs forming a
PAU.

FIG. 11A is an exemplary diagram showing first-order
visibility event surfaces (wedges) generated by the present
pivot and sweep method in the case of a compound silhouette
contour.

FIG. 11B is a different view of the same structures shown
in FIG. 11A.

FIG. 11C shows a portion of a continuous linearized
umbral event surface formed at a compound silhouette vertex
using at least one higher-order pivoted wedge. Same view as
FIG. 2B and FIG. 11A.

FIG. 12 is an exemplary flowchart showing a method of
constructing a conservative, first-order, linearized umbral
discontinuity mesh using pivot-and-sweep construction of
wedges.

FIG. 13 is an exemplary flowchart showing the process of
identifying and resolving overlap cycles during 3D mesh
traversal.

FIG. 14 is an exemplary flowchart showing the control
process for a method of constructing on-wedge, from-view-
cell element 2D visibility map using 2D mesh traversal.

FIG. 15 is an exemplary flowchart showing the main tra-
versal process for a method of constructing on-wedge, from-
viewcell element 2D visibility map using 2D mesh traversal.

FIG. 16 is an exemplary flowchart showing a process for
determining if 2D discontinuity mesh point is otherwise con-
servatively occluded from the wedge’s corresponding view-
cell element (VCE).

FIG. 17 is an exemplary flowchart showing the control
process for a method of constructing higher-order wedge
lines for determining an on-viewcell edge visibility map by
backprojection.

FIG. 18 is an exemplary flowchart showing the main pro-
cess for backprojection, from-vertex, 2D mesh traversal main
process for constructing higher-order wedge lines.

FIG. 19 is an exemplary flowchart showing a controlling
process for an output-sensitive method of constructing a
from-region visibility map using 3D polygon mesh traversal.

FIG. 20A1 is an exemplary flowchart showing the main
process for output-sensitive method of constructing a conser-
vative, linearized, from-region visibility map using 3D mesh
traversal.

FIG. 20B is an exemplary flowchart showing a method of
using an estimate of difference in umbral volumes produced
by the pivot-and-sweep method and the intersecting planes
method, estimated at an inside-corner vertex; and the differ-
ence used to determine the method of constructing the con-
tinuous umbral event surface at the inside-corner vertex.

FIGS. 20C-20] illustrate steps of a 3D mesh traversal of
polygon meshes.

FIG. 20K is a diagram showing a surrounding polygon
mesh which contains other polygon meshes.

FIG. 21A is an exemplary flowchart of a method to deter-
mine if discontinuity mesh segment is otherwise occluded
from the viewcell (i.e. is discontinuity mesh segment a from-
region occlusion boundary).

FIG. 21B is a continuation of FIG. 21A.

FIG. 21C is an exemplary flowchart showing a method of
classifying pvs polygons as strongly visible, non-occluding,
and always-frontfacing.

FIG. 22 is an exemplary flowchart showing the controlling
process for a method of 3D mesh traversal to construction a
backprojection, from-silhouette edge visibility map for deter-

10

15

20

25

30

35

40

45

50

55

60

65

30

mining the from-silhouette-edge visible supporting viewcell
vertex (VSVV) and visible supporting viewcell silhouette
contour (VSVSC).

FIG. 23 is an exemplary flowchart showing the main pro-
cess for a method of 3D mesh traversal to construct a back-
projection, from-silhouette edge visibility map for determin-
ing the from-silhouette-edge visible supporting viewcell
vertex (VSVV) and visible supporting viewcell silhouette
contour (VSVSC).

FIG. 24A is an exemplary flowchart showing a process to
determine if a dm_segment is otherwise occluded from a
silhouette edge source, used in construction of a from-silhou-
ette-edge visibility map backprojection employing 3D mesh
traversal.

FIG. 24B is an exemplary continuation of FIG. 24A.

FIG. 24C is an exemplary flowchart showing a method of
using the from-silhouette edge backprojection visibility map
to constructive a conservative visible supporting viewcell
silhouette contour (VSVSC) that contains the VSVSs corre-
sponding to ladjacent silhouette edges.

FIG. 25 is an exemplary flowchart showing a method of
point-occlusion test using first-order wedges and higher-or-
der wedges.

FIG. 26 is an exemplary flowchart showing and alternate
embodiment method of constructing polyhedral aggregate
umbrae (PAU) from umbral boundary polygons (UBPs) using
3D mesh traversal.

FIG. 27A is an exemplary diagram showing a viewcell and
two polygon mesh objects, MESH E and MESH D. FIG. 27A
illustrates that a first-order, from-region, SV-ME umbral
wedge may be inexact on segments where the corresponding
supporting polygon intersects geometry between the viewcell
and the supporting first-order silhouette edge.

FIG. 27B is an exemplary diagram showing the same view
as FIG. 27A except that the inexact portion of the first-order
wedge is refined by subdividing the corresponding segment
of the first-order silhouette edge and conducting first-order
backprojection using the subsegments as a linear light source.
The result is that the inexact portion of the wedge is replaced
by two SV-ME wedges connected by a single SE-MV wedge
which together form a continuous umbral surface that more
precisely approximates the actual quadric umbral event sur-
face incident on the inexact segment of the first-order silhou-
ette edge.

FIG. 27C is an exemplary diagram showing the same view
as FIG. 27B except that the subdivision of the inexact portion
of'the original first-order wedge is now refined by subdividing
the corresponding segment of the first-order silhouette into
four subsegments instead of two, producing an even more
precise approximation to the actual umbral event surface (a
quadric) in this region.

FIG. 27D is an exemplary diagram of the same structures as
FIG. 27A from a different view (from slightly behind the
viewcell) showing that the first-order silhouette edge having
segments SE1U and SE10 is first-order visible from the
viewcell.

FIG. 28 is an exemplary flowchart showing a method of
controlling the from-edge backprojection process by exam-
ining maximal possible deviation between first-order and
exact wedge, and by identifying segments of silhouette edge
for which first-order wedge is inexact.

FIG. 29 is an exemplary flowchart showing control of
from-edge backprojection process by examining maximal
possible deviation between first-order and exact wedge, and
by identifying simple and compound inside-corner silhouette
vertices for which first-order se-mv wedge(s) are inexact.

US 9,171,396 B2

31

FIG. 30A is an exemplary flowchart showing method of
identifying from-viewcell-occluded regions in visibility map
having high effective static occlusion (ESO) and the process
of conservatively simplifying both the occluded region
boundary and the corresponding mesh silhouette contour.

FIG. 30B is a continuation of FIG. 30A.

FIG. 30C is a continuation of FIG. 30B.

FIG. 30D is a 3D hidden-line diagram showing a viewcell
and two polygon meshes.

FIG. 30E is a 3D hidden-line diagram showing the same
perspective view as FIG. 30D, and including an occlusion
region and corresponding occlusion boundary.

FIG. 31A shows exemplary data structures employed by
the method of labeled silhouette edges.

FIG. 31B is a continuation of FIG. 31A.

FIG. 31C is a continuation of FIG. 31B.

FIG. 31D is a diagram showing data structures for an
exemplary embodiment employing deltaG+ data.

FIG. 32A is an exemplary flowchart showing a method of
identifying edges and vertices of a silhouette contour using
data structures for labeled silhouette contours.

FIG. 32B is a continuation of FIG. 32A.

FIG. 33 A is an exemplary flowchart showing the method of
identifying delta regions of visibility difference for a transi-
tion from viewcell A to viewcell B.

FIG. 33B is an exemplary continuation of FIG. 33A.

FIG. 33C is a continuation of the exemplary flow diagram
of FIG. 33B.

FIG. 33D is a continuation of the exemplary flow diagram
of FIG. 33C.

FIG. 34A is an exemplary flowchart showing a method of
rapid runtime construction of visibility map occlusion bound-
ary segments using labeled silhouette contour information for
a single contour.

FIG. 34B is a continuation of FIG. 34A.

FIG. 35A is an exemplary flowchart showing a method of
constructing visibility map occlusion boundary segments
derived from a single silhouette edge of a labeled silhouette
contour.

FIG. 35B is a continuation of FIG. 35A.

FIG. 36 is an exemplary flowchart showing a process con-
trolling the runtime process of constructing visibility map
ROI using ROI boundaries constructed from pre-stored
labeled silhouette contours wherein the ROI boundaries
define delimit a simplified, hinted, runtime 3D mesh traversal
process which traverses the ROI.

FIG. 37A is the main process of using simplified, hinted,
runtime 3D mesh traversal process to construct ROI from
pre-stored labeled silhouette contour information and a list of
seed triangles for the connected components of the ROI.

FIG. 37B is an exemplary flow diagram showing a method
of identifying and storing significant viewcell-viewcell
occlusion and silhouette boundaries using mesh traversal.

FIG. 37C, is an exemplary flow diagram showing a method
of constructing connected components of VM/PVS corre-
sponding to a viewcell transition using traversal employing
precomputed significant occlusion boundaries and/or silhou-
ette contours stored as run-length encoded encounter num-
bers (ENs).

FIG. 37D1 is an exemplary diagram showing a triangle
mesh and the shows a starting triangle T0 and 12 other labeled
triangles encountered in a depth-first traversal starting from
triangle TO0.

FIG. 37D2 is an exemplary diagram showing a triangle
mesh and the shows a starting triangle T0 and 12 other labeled
triangles encountered in a breadth-first traversal starting from
triangle TO0.

15

20

25

30

35

40

45

32

FIG. 37E1 shows the subset of the triangles of the triangle
mesh that are traversed during 12 steps of a depth-first tra-
versal starting from triangle T0.

FIG. 37E2 shows the subset of the triangles of the triangle
mesh that are traversed during 12 steps of a breadth-first
traversal starting from triangle T0.

FIG. 37F1 shows the subset of the triangles of the triangle
mesh that are traversed during 12 steps of a depth-first tra-
versal starting from triangle T0, and the order of the edges
encountered during this traversal.

FIG. 37F2 shows the subset of the triangles of the triangle
mesh that are traversed during 12 steps of a breadth-first
traversal starting from triangle T0, and the order of the edges
encountered during this traversal.

FIG. 38A is an exemplary flowchart showing a method of
attaching a deltaG+ submesh corresponding to newly
exposed mesh elements for a specific viewcell transition to
the corresponding labeled silhouette contour’s starting
boundary.

FIG. 38B1 is a perspective view, hidden line diagram
showing two viewcells, a mesh object, a circular profile P, and
a path Q over which the profile P is swept to generate a
procedural object.

FIG. 38B2 is a perspective view, hidden line diagram of the
same objects as FIG. 38B1, but from a different view, gener-
ally looking from the viewcells toward the path and profile.

FIG. 38B3 is a perspective view, hidden line diagram of the
same objects as FIG. 38B1, but from a different view, gener-
ally looking from the profile and path back to the viewcells.

FIG. 38C1 is an exemplary perspective view similar to
FIG. 38B1 but showing the entire MESH PQ generated from
the procedure of sweeping the PROFILE P (in FIG. 38B1)
along path Q (in FIG. 38B1) using parameters P and Q,
respectively.

FIG. 38C2 is an exemplary perspective view of the same
objects of FIG. 38C1, but from a different view, generally
looking from the viewcells toward the path and profile.

FIG. 38C3 is an exemplary perspective view, hidden line
diagram of the same objects as FIG. 38C1, but from a differ-
ent view, generally looking from the profile and path back to
the viewcells.

FIG. 38D1 is an exemplary perspective hidden-line dia-
gram showing only the portion of MESH PQ that is visible
from VIEWCELL 1.

FIG. 38D2 is an exemplary perspective hidden-line dia-
gram showing only the portion of MESH PQ that is visible
from VIEWCELL 2.

FIG. 38E1 is an exemplary hidden line perspective view
diagram of VIEWCELL 1 and the portion of MESH PQ
visible from VIEWCELL 1.

FIG. 38E2 is an exemplary wireframe perspective view
diagram of VIEWCELL 1, MESH 1 and the same pivoted
supporting polygons shown in FIG. 38E, but from a different
perspective generally looking toward the viewcell, which is
mostly obscured by MESH 1.

FIG. 38F1 is an exemplary perspective view hidden line
diagram showing the same VIEWCELL 1, MESH 1, and
MESH PQ_VIS_VC1 as illustrated in FIG. 38E1, and from a
similar perspective.

FIG. 38F2 is an exemplary perspective view hidden line
diagram showing the same VIEWCELL 1, MESH 1, and
MESH PQ_VIS_VC1 as illustrated in FIG. 38E2, and from a
similar perspective.

FIG. 38G1 is an exemplary perspective view hidden line
diagram showing the same MESH 1, and MESH PQ as illus-
trated in FIG. 38F1, and from a similar perspective, but show-
ing a different viewcell, VIEWCELL 2.

US 9,171,396 B2

33

FIG. 38G2 is an exemplary perspective view hidden line
diagram showing the same VIEWCELL 1, MESH 1, and
MESH PQ_VIS_VC1 as illustrated in FIG. 38F2, and from a
similar perspective. In FIG. 38G2 the pivoted visibility event
wedges are shown.

FIG. 38G3 is an exemplary perspective hidden line dia-
gram showing the same objects of FIG. 38F2, but from a
different perspective looking “up” toward the viewcell and
viewing the unoccluded side of first-order wedge FOW 1-3.

FIG. 38H is an exemplary block diagram/flow diagram
showing the general method of determining the components
of'aprocedurally generated polygon mesh object that become
visible during a viewcell transition from viewcell VC[1] to
viewcell VCJ[2], identifying and storing the procedural
parameter values corresponding to the newly exposed com-
ponents, and using these stored parameter values to generate
the newly exposed components of the polygon mesh at runt-
ime ifthe user’s viewpoint is predicted to move from VC[1] to
VC[2].

FIG. 381 is an exemplary flow diagram showing additional
details of the method of determining the components of a
procedurally generated polygon mesh object that become
visible during a viewcell transition from viewcell VC[1] to
viewcell VC[2] and identifying and storing the procedural
parameter values corresponding to the newly exposed com-
ponents.

FIG. 38] is an exemplary flow diagram showing a method,
conducted on a visibility event client unit at runtime, of con-
structing the polygons corresponding to a viewcell transition
region using stored procedural construction parameter values
which, when employed to drive a procedural mesh construc-
tion process, produce a superset of the polygons of the view-
cell transition region (those polygons that become potentially
visible during the movement of a client user’s viewpoint from
one viewcell to another, e.g. VC[1] to VCJ[2]).

FIG. 38K1 is an exemplary diagram ofa polygon mesh and
the region enclosed by dashed line EB 1-2 is a significant
visibility transition region of exposure corresponding to the
viewcell transition VC[1] to VC|2].

FIG. 38K2 is an exemplary diagram showing the same
mesh as FIG. 38K1, but showing only those polygons of the
mesh that are conservatively part of the visibility transition
region as determined by a depth-first traversal starting at seed
triangle T0 and ending at triangle T9.

FIG. 38K3 shows the same procedurally generated mesh
object as FIG. 38K1 and FIG. 38K2 but showing set of tri-
angles a conservative superset of the triangles that actually
become visible, using parametric procedural visibility.

FIG. 39A shows an exemplary simple occluder.

FIG. 39B shows exemplary the delta regions (DR) of
occlusion formed by the simple occluder (of FIG. 39A) when
viewed from connected viewcells A and B.

FIG. 40 shows the same unified from-region visibility map
as FIG. 39B except that the portions of the OCCLUSION
REGION VIEWCELL A that are outside the OCCLUSION
REGION VIEWCELL B are labeled as DR ,BA (delta region
of'occlusion from B to A) and DR zAB (delta region of expo-
sure from A to B).

FIG. 41A is an exemplary diagram showing the use of the
on-wedge visibility method (FIG. 14, FIG. 15, and F1G. 16) to
identify CSVs and construct wedge lines for a SV-ME wedge.
FIG. 41A shows the case of a simple CSV no cusp.

FIG. 41B is an exemplary diagram showing the use of the
on-wedge visibility method (FIG. 14, FIG. 15, and F1G. 16) to
identify CSVs and construct wedge lines for a SV-ME wedge.
FIG. 41B shows case of degenerate CSV forming a cusp of
the first-order silhouette contour.

20

25

35

40

45

34

FIG. 41C is an exemplary drawing showing a SE-ME
wedge incident on a first-order silhouette edge intersecting 3
polygon mesh objects, the first-order from-viewcell-edge
wedge lines (WLs) and their intersection with mesh polygons
are shown. The figure is used to illustrate the operation of the
2D mesh traversal process for constructing an on-wedge vis-
ibility map (FIG. 15 and related figures).

FIG. 41D is a perspective view diagram showing a polygon
mesh, a viewcell, and a portion of a first-order silhouette
contour including a cusp and a compound silhouette vertex.

FIG. 42A is an exemplary flowchart Showing the method
using hierarchical viewcells.

FIG. 42B is an exemplary flowchart Showing the method
using hierarchical viewcells.

FIG. 43A is an exemplary diagram and FIG. 43B data
structures for incremental VM/PV'S maintenance using delta
VM/PVS data.

FIG. 43B is a continuation of FIG. 43A.

FIG. 44A is an exemplary block diagram/flowchart illus-
trating a visibility event content server and also illustrating
the same separate visibility event advertising or cash store
server.

FIG. 44B is a block diagram/flow diagram showing the
visibility event content server illustrated in FIG. 44A, and
including steps of charging a client-user a fee for interactive
content or purchasing cash store items.

FIG. 45 is an exemplary flow diagram illustrating a method
of streaming visibility event packets including geometry
information, texture information, or instructions to generate
geometry or texture information, wherein the visibility event
information represents advertising and targeted advertising
during low bandwidth requirement periods of a streaming
interactive media data stream conveying a broadcast visibility
event data stream allowing limited interactive control of
viewpoint position by the client-user.

FIG. 46 is an exemplary flow diagram illustrating a method
of streaming visibility event packets including geometry
information, texture information, or instructions to generate
geometry or texture information, wherein the visibility event
information represents advertising and targeted advertising
during low bandwidth requirement periods of a unique vis-
ibility event data stream allowing interactive control of view-
point position by the client-user.

FIG. 47A is a perspective hidden line diagram showing a
modeled environment and the viewcells corresponding to a
visibility event data cache state for a client-user located at
viewpoint VP1, and moving with the velocity vector VEC-
TOR1.

FIG. 47B is an exemplary perspective hidden line diagram
corresponding to cached visibility event packets for a second
current camera/viewpoint location VP2.

FIG. 47C is an exemplary perspective view hidden line
diagram showing the same objects as FIG. 47B, but with the
advertising object 4704 highlighted or otherwise accentuated
during an “active period”

FIG. 47D is an exemplary perspective view hidden line
diagram showing the same objects as FIG. 47C, but with the
cash store object 4703 highlighted or otherwise accentuated
during an “active period”.

FIG. 48A is an exemplary flow diagram showing a method
of selecting an advertising object which does not require the
user to point to or otherwise target the object.

FIG. 48B is an exemplary flow diagram showing a method
of selecting an cash store object which does not require the
user to point to or otherwise target the object.

US 9,171,396 B2

35

FIG. 49A is an exemplary flow diagram showing a method
in which two visibility event streams are delivered simulta-
neously to a user and combined to form an integrated visibil-
ity event data stream.

FIG. 49B, the default state is to provide the user with only
the entertainment content visibility event data stream and to
allow the user to select an integrated advertising object vis-
ibility event data stream which optionally decreases the cost
of the entertainment stream for the user.

FIG. 50A is an exemplary flow diagram showing a method
in which two visibility event streams are delivered simulta-
neously to a user and combined to form an integrated visibil-
ity event data stream.

FIG. 50B is an exemplary flow diagram showing a method
in which two visibility event streams are delivered simulta-
neously to a user and combined to form an integrated visibil-
ity event data stream.

FIG. 51 is an exemplary block diagram showing three main
components: 1) visibility event encoder, 2) visibility event
server, and 3) visibility event client.

FIG. 52 is an exemplary block diagram showing the main
components of an exemplary embodiment of an interactive
content delivery system employing a visibility event codec
and incorporating a common input format and VE client
interface which isolates the game engine data and the codec
data formats.

FIG. 53 is an exemplary schematic illustration of a unipro-
cessor computer system for implementing System and
Method of From-Region Visibility Determination and Delta-
PVS Based Content Streaming Using Conservative Linear-
ized Umbral Event Surfaces according to the present inven-
tion.

FIG. 54 is an exemplary diagram of a processor.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

In exemplary embodiments, a graphical object includes
one or more mesh polygons forming an object that can be
displayed in a computer generated modeled environment. In
further exemplary embodiments, a graphical object includes
one or more surfaces of an object that can be displayed in a
computer generated modeled environment.

In exemplary embodiments, the terminology ESO (Effec-
tive Static Occlusion) refers to a metric that is in some direct
proportion to the number of (original mesh) polygons and/or
surface area of these polygons inside an occluded region of a
visibility map. The ESO is also in some inverse proportion to
the number of new polygons introduced in the visible region
surrounding the occluded region as a result of retriangulation
caused by the edges of the occlusion boundary. The metric is
used in conservative simplification of a VM or unified VM.

In exemplary embodiments, the terminology EDO (Effec-
tive Dynamic Occlusion) refers to a metric that is in some
direct proportion to the number of polygons and/or surface
area of polygons occluded in a delta region (DR) of occlusion
wherein the DR represents the region of occlusion produced
during a specific viewcell transition. The ESO is also in some
inverse proportion to the number new polygons introduced in
the visible region surrounding the DR as a result of retrian-
gulation caused by the edges of the occlusion boundary.

In exemplary embodiments, the terminology EDV (Effec-
tive Dynamic Visibility) refers to a measure of the effective-
ness of a delta region (DR) of a unified visibility map. If the
DR is a DR, (delta region of occlusion) for the specific
viewcell transition then the EDV corresponds to the EDO of
the DR.

20

30

35

40

45

55

36

Ifthe DR is a DR (delta region of exposure) then the EDV
is determined by examining the ESO of the surrounding
occlusion regions. Simplification of the DR, proceeds by
simplification of the surrounding OR and extending the poly-
gons of the DR into the OR or DR,

In exemplary embodiments, the terminology Unified Vis-
ibility Map refers to a visibility map including from-viewcell
occlusion boundaries generated from two viewcells (e.g. A
and B) wherein the viewcells are related in one of two ways:
1) one viewcell is completely contained in the other, or 2) the
viewcells completely share a common face. The unified vis-
ibility map is an arrangement of VM regions such that some
regions contain newly occluded mesh triangles/fragments
and other regions contain newly exposed mesh triangles/
fragments for the transition from viewcell A to viewcell B.
The unified visibility map is used to construct delta-PV'S data
for direct storage. Alternatively the unified visibility map can
be used to identify significantly occluding or significantly
silhouette contours which can be labeled and used to generate
the deltaG/delta-PVS data later.

In exemplary embodiments, the terminology wedge (see
also CLUES) refers to a visibility event surface formed by a
feature (vertex or edge) of a viewcell and vertices or edges of
the mesh polygons. In general a wedge defines the visibility
from the viewcell’s feature, and across the mesh polygon’s
vertex or edges.

The wedges employed in the prior-art method of disconti-
nuity meshing are exact. These edges may be planar or quad-
ric surfaces. The planar wedges described in the discontinuity
mesh literature are of two types renamed here as:

1) SV-ME wedge-Formed by a vertex of the viewcell (or
“source”) and an edge of the mesh. Also called a pivoted
wedge or a supporting vertex wedge.

2) SE-MV wedge-Formed by an edge of the viewcell and a
vertex of the polygon mesh. Also called a swept wedge or
supporting edge wedge.

3) SE-ME wedge-Formed in the special case where the
mesh silhouette edge is parallel to a supporting viewcell
silhouette edge.

These definitions assume frontprojection (i.e. using the
viewcell as the lightsource). In the backprojection method a
silhouette edge or segment of a silhouette edge is used as the
“source” and various silhouette edges in the shaft between the
source edge and the viewcell support the backprojection
event surfaces. The definitions are otherwise identical for the
backprojection case.

Since the wedges employed in discontinuity meshing are
typically used to identify components of the sources penum-
bra they are constructed on a relatively large number of edges
of'the polygon meshes, called from viewcell silhouette edges.

Since the planar wedges used in discontinuity meshing are
exact event surfaces they are not defined on regions for which
the wedge’s viewcell feature (vertex or edge) is occluded
from the wedge’s polygon mesh feature. This definition of a
wedge creates “gaps” in the planar event surfaces that cause
the surfaces to be discontinuous. In the method of complete
discontinuity meshing these gaps are filled with higher-order
visibility event surfaces which may be quadric wedges. The
gaps are filled by these higher-order event surfaces the and
resulting visibility event surfaces, in general, continuous.

See Table Ia and Ib for wedge nomenclature.

Embodiments also employ planar from-feature event sur-
faces, the conservative linearized umbral event surfaces
(CLUES) which are similar to the planar wedges employed in
discontinuity meshing but differ from these wedges in impor-
tant respects.

US 9,171,396 B2

37

One difference between the planar wedges used in discon-
tinuity meshing and the CLUES (also called first-order
wedges, or simply wedges in the present specification) is that
the wedges employed in the present method are only those
wedges that could form from-viewcell umbral event surface,
penumbral events per se are not considered in from-viewcell
visibility. The wedges of the present method are constructed
on fewer polygon mesh edges (called the first-order silhouette
edges) and they are constructed using a pivot-and-sweep
technique which generates only potential umbral event
wedges. This means that the number of wedges constructed in
the present method is far less than the number of wedges
generated in discontinuity meshing.

Another difference between discontinuity meshing wedges
and the wedges of the present method is that the wedges of the
present method are defined and constructed using only by the
wedge’s viewcell feature and the wedge’s polygon mesh
feature. Any intervening geometry between these two fea-
tures is ignored.

This method of wedge construction is based on the first-
order model of visibility propagation in polyhedral environ-
ments which insures that conservative, continuous umbral
boundaries are constructed.

In actuality, intervening geometry may cause regions for
which the viewcell feature is occluded from the polygon mesh
feature. These are regions of the wedge in which the corre-
sponding discontinuity mesh wedge would not be defined
(thereby producing a gap or discontinuity in the event surface
which is normally filled by a higher-order wedge or quadric).
By ignoring this intervening geometry the present method
constructs wedges which define a continuous event surface
without gaps. Since the wedges of the present method are
constructed by ignoring this type of higher order occlusion
they conservatively represent the actual from-feature umbral
event surface. For regions of the wedge in which there is no
intervening geometry, the wedges constructed by the present
method are exact.

In regions where the wedge is inexact the wedge may be
optionally replaced by other wedges constructed using a
modified method of wedge construction which accounts for
higher-order occlusion caused by the intervening geometry.

The present method includes three types of (first-order)
wedges:

1) SV-ME wedge-formed by extending the edges of a cor-
responding pivoted supporting polygon. The corresponding
pivoted supporting polygon is formed by a supporting vertex
of'the viewcell (SVV) and a first-order silhouette edge of the
polygon mesh by the process of pivoting from the edge to the
viewcell. The pivoted supporting polygon is also called a
SV-ME supporting polygon or a vertex supporting polygon.
This type of visibility event surface reflects containment at a
point on the viewcell and occlusion by an (silhouette) edge of
the mesh. Also called a pivoted wedge. The pivoting process
is described as a process that identifies the supporting plane
between the first-order silhouette edge and a viewcell. While
the process may appear to a human being to be an actual
continuous rotation of a plane about the silhouette edge until
it touches the viewcell, in fact embodiments can measure
specific discrete angles formed by each candidate supporting
plane (formed by corresponding viewcell vertex) and another
polygon. Comparing these angle measurements in one
embodiment allows determination of the actual supporting
polygon from a number of candidate supporting polygons.

2) SE-MV wedge-formed by extending the edges of a
corresponding swept supporting polygon (also simply called
a swept polygon or an edge supporting polygon), which is a
supporting polygon formed by a supporting edge of the view-

20

30

35

40

45

55

38

cell and an inside corner mesh silhouette vertex by the process
of sweeping along the supporting viewcell silhouette contour
(SVSC) between the SVVs supporting the adjacent SV-ME
wedges. This type of visibility event surface reflects contain-
ment on a (boundary) edge of the viewcell restricted at an
(inside corner) mesh silhouette vertex. An SE-MV wedge is
also called a swept wedge.

3) SE-ME wedge-formed only where the supporting view-
cell edge and the supported mesh silhouette edge are parallel.
Formed by extending the edges of the corresponding SE-ME
supporting polygon formed between the parallel supporting
viewcell edge and the supported mesh silhouette edge. Unlike
the other types of planar wedges the determination of on-
wedge visibility for an SE-ME wedge is a from-region, not a
from-point visibility problem. This type of visibility event
surface reflects containment on a (boundary) edge of the
viewcell and occlusion by an (silhouette) edge of the mesh.

Another important difference between the wedges used in
prior-art discontinuity meshing and those used in the present
invention is that in the present method on-wedge visibility is
determined using a conservative method in which on-wedge
silhouette vertices are constrained to occur on first-order,
from-viewcell silhouette edges. This insures that each on-
wedge silhouette vertex is a compound silhouette vertex
(CSV), a point of intersection of two wedges (one corre-
sponding to the current wedge). In contrast, in prior-art dis-
continuity meshing methods, on-wedge visibility is deter-
mined exactly, typically using from-point object space
visibility methods like the Weiler-Atherton algorithm.

In exemplary embodiments, the terminology pivoted
wedge referst to an SV-ME wedge formed by extending the
edges of a pivoted supporting polygon.

In exemplary embodiments, the terminology CLUES
(Conservative Linearized Umbral Event Surface) (See
Wedge) refers to another name for the first-order umbral
wedges constructed using the pivot-and-sweep method of the
present invention. These wedges may be refined to reflect
higher-order visibility interactions using the backprojection
method of the present invention.

In exemplary embodiments, the terminology Umbra
Boundary Polygon (UBP) refers to a polygon that is part of
the surface of the from-viewcell umbral volume. In the
present method the from-viewcell umbral volumes (called the
polyhedreal aggregate umbrae, or PAU) may be constructed
using conservative UBPs that are derived from the corre-
sponding (first-order) wedges.

The wedges employed by the present method are from-
viewcell-feature umbral event surfaces that are guaranteed to
be from-viewcell umbral event surfaces (from the entire
viewcell) only in the immediate vicinity of the mesh silhou-
ette edge that supports the wedge. This is because the wedge
may intersect another wedge beyond the supporting silhou-
ette edge in a way that restricts the from-viewcell umbral
boundary on the wedges. That is to say that the wedge itself,
which is tangentially visible from the supported viewcell
feature, may become visible from other parts of the viewcell.

Higher-order UBPs may be constructed from the corre-
sponding higher-order wedges.

In exemplary embodiments, the terminology polygon
mesh refers to a finite collection of connected vertices, edges,
and faces (also called polygons) formed from the vertices and
edges. If two polygons of a mesh intersect, the edge or vertex
of intersection must be a component of the mesh. No inter-
penetration of faces is allowed. Also called a polygon mesh
object, triangle mesh or simply mesh. If each edge of the mesh
is shared by at most two polygons it is a manifold polygon
mesh. If each edge is shared by exactly two faces then the

US 9,171,396 B2

39

mesh is a closed manifold polygon mesh. Polygon meshes in
this specification are assumed to be closed manifold meshes
unless otherwise indicated.

In exemplary embodiments, the terminology viewcell or
view region refers to a polyhedron, which may be represented
as a polygon mesh, which describes a region to which the
viewpoint is restricted. Viewcells and view regions in this
specification are assumed to be convex unless otherwise indi-
cated. A viewcell may be constrained to be a parallelpiped or
box, while a view region may not necessarily be so con-
strained.

In exemplary embodiments, the terminology PVS (poten-
tially visible set) refers to a set of polygons or fragments of
polygons that are visible from a viewcell. Generally a PVS is
computed to be conservative, including all polygons or poly-
gon fragments that are visible as well as some that are not.

In exemplary embodiments, the terminology Polyhedral
Aggregate Umbrae (PAU) refers to the volume of space
occluded by a mesh object from a viewcell, assuming the
first-order model of visibility propagation, is called the first-
order polyhedral umbra volume. Since individual umbral vol-
umes may intersect to aggregate the occlusion we call these
volumes the first-order polyhedral aggregate umbra (PAU).

First-order PAU, also simply called PAU, are bounded by
polygons called umbra boundary polygons or UBP. These
polygons are formed by the intersection of the first-order
wedges with triangle mesh polygons and with other first-
order wedges. The PAU are also bounded by the first-order
visible mesh polygon fragments (the fragments comprising
the from-viewcell visibility map). Together the UBPs and the
visible mesh polygon fragment form continuous (though not
necessarily closed) umbral surfaces that define the bound-
aries of the PAU.

As described in detail in conjunction with the 3D 2-mani-
fold traversal method (FIG. 20 and related figures); the con-
struction of the visibility map involves a step in which it is
determined if a point on an on-wedge visible polyline seg-
ment is actually within a PAU volume, and therefore occluded
from the entire viewcell. The method includes a modified
point-in-polyhedron test which can answer this query for
first-order PAU without explicitly constructing the entire
PAU.

In exemplary embodiments, the terminology Discontinuity
Mesh (DM) refers to a mesh formed by the intersection of
visibility event surfaces with mesh polygons. A discontinuity
mesh formed from visibility event surfaces incident on a
viewcell partitions the mesh polygons into partitions (called
regions) of uniform qualitative visibility or “aspect” with
respect to the viewcell.

In the prior-art method of complete discontinuity meshing
all event surfaces, umbral and penumbral, incident on the
light source are constructed.

In some embodiments, from-viewcell discontinuity
meshes are constructed from first-order, from-viewcell
umbral visibility event surfaces or from first-order umbral
visibility event surfaces which have been refined, by a back-
projection technique, to account for higher-order visibility
interactions.

Despite the fact that only umbral event surfaces are
employed; not all regions of the umbral DM bordered by the
occluded side of oriented DM polylines are actually occluded
from the entire viewcell. This is because the from-viewcell
status of a region (its actual inclusion as part of a PAU) is
determined by wedge-wedge intersections in R3 that may not
be reflected in the corresponding wedge-polygon mesh inter-
section.

20

25

35

40

45

50

40

In exemplary embodiments, the terminology Visibility
Map (VM) refers to a partitioning of mesh polygons into
regions that are occluded from the entire viewcell and other
regions that are visible from some point on the viewcell. In
prior-art methods of exact from-region visibility (Nierenstein
etal. 2000, 2005) these partitions are constructed using exact
visibility event surfaces which are generally, quadrics.

Embodiments construct conservative, linearized, umbral
discontinuity meshes using the corresponding CLUES. The
resulting DM is conservative partitioning of mesh polygons
into regions that are occluded from the entire viewcell and
other regions that are visible from some point on the viewcell.
The boundaries of the VM are a subset of the boundaries of
the corresponding DM, since not all regions of the umbral
DM bordered by the occluded side of oriented DM polylines
are actually occluded from the entire viewcell. In contrast the
corresponding VM contains only regions that are guaranteed
to be occluded from the entire viewcell (umbral regions of the
VM) and other regions that are visible from some point on the
viewcell, wherein the occlusion may be conservatively under-
estimated and the visibility consequently overestimated.

In exemplary embodiments, the terminology silhouette
edge refers to an edge of a polygon mesh which has one
component polygon that is front facing from a particular
location and another component polygon that is backfacing
from the same location.

In exemplary embodiments, the terminology From-Point
Silhouette Edge refers to an edge of a polygon mesh which
has one component polygon that is front facing from a par-
ticular point and another component polygon that is backfac-
ing from the same point.

In exemplary embodiments, the terminology From-Region
Silhouette Edge (also called general from-region silhouette
edge) is defined with respect to a region such as a viewcell (or
an polygon mesh edge in the case of backprojection) acting as
a light source. If the location is a viewcell the from-region
silhouette edge may be called a from-viewcell silhouette
edge. If the region is an edge then the from-region silhouette
edge may be called a from-edge silhouette edge. In the
present specification any of type of silhouette edge (from-
point, from-viewcell, from-edge) may simply be called a
silhouette edge, with the type of silhouette edge being implied
by the context.

A from-viewcell general silhouette edge is any edge of a
polygon mesh that is a from-point silhouette edge for any
point on a viewcell (or area lightsource). This is the definition
of from-viewcell silhouette edge employed by Nierenstein et.
al. 2005 and in the complete discontinuity meshing method of
Drettakis et. al. 1994.

In general such edges support from-region penumbral
event surfaces but a subset actually support from-region
umbral event surfaces which are typically quadric surfaces.

From-region silhouette edges may be defined exactly,
when higher-order visibility interactions of edge triples are
considered. Alternatively from-region silhouette edges may
be defined, as in the present method, conservatively by con-
sidering only visibility event surfaces that arise as a result of
interactions between edge pairs; as in the first-order visibility
model of visibility propagation.

In exemplary embodiments, the terminology First-Order
Silhouette Edge refers to a first-order from-viewcell silhou-
ette edge (also called simply a first-order silhouette edge) is
an edge of a polygon mesh that has one component polygon
that is backfacing for the entire viewcell, and the other com-
ponent polygon that is front facing for at least one vertex of
the viewcell, wherein the component polygons are backfac-
ing with respect to each other.

US 9,171,396 B2

41

This definition is based on a simple, conservative model of
visibility propagation in polyhedral environments called first-
order visibility, which considers only the visibility event sur-
faces that arise as a result of interactions between edge pairs.

One embodiment of the present invention employs poly-
gon meshes that are manifold triangle meshes. In a manifold
triangle mesh, each edge is completely shared by exactly two
triangles. The specification of first-order silhouette edges is
simplified by using manifold triangle meshes.

A first-order silhouette edge of a polygon mesh with
respect to a viewcell is a locally supporting edge of the poly-
gon mesh with respect to the viewcell. A locally supporting
edge supports a polygon between the viewcell and the edge if
only the viewcell and the two component polygons (triangles)
sharing the edge are considered in the test for support. (See
definition of test for support).

Generally first-order from-region silhouette edges are a
small subset of the exact from-region silhouette edges of any
polygon mesh.

In the present specification, any type of first-order silhou-
ette edge (from-viewcell, from-edge) may simply be called a
first-order silhouette edge, or simply a silhouette edge with
the type of silhouette edge being implied by the context.

The present invention includes a method of identifying (by
adaptive refinement and backprojection) where a first-order
silhouette edge is inexact and “retracting” the silhouette edge
to a closer edge that belongs to the set of exact from-region
silhouette edges of the polygon mesh.

In exemplary embodiments, for the terminology Locally
Supporting Edge, see First-Order Silhouette Edge.

In exemplary embodiments, the terminology supporting
polygon refers to a supporting polygon that is “supported” by
two structures. In the present method, a supporting polygon
between a first-order silhouette edge of a polygon mesh and a
viewcell is, in one case, formed by the first-order silhouette
edge and a vertex of the viewcell (SV-ME supporting poly-
gon). The vertex of the viewcell supporting this polygon is
called the supporting viewcell vertex (SVV). It can be iden-
tified by pivoting the plane of the backfacing component
polygon of the silhouette edge, wherein the pivoting occurs
about the silhouette edge and in a direction of the normal of
the backfacing component polygon of the edge toward the
viewcell until the plane of the supporting polygon intersects
the viewcell. This intersection will, in the general case, occur
at the supporting viewcell vertex, which together with the
first-order silhouette edge, forms a supporting polygon that is
a triangle. If the supporting viewcell vertex is a vertex of an
edge of the viewcell that is parallel to the silhouette edge of
the mesh then the pivoting plane will intersect the edge of the
viewcell, not just a single vertex, and the supporting polygon
will be a quadrangle formed by the mesh silhouette edge and
the intersected viewcell edge. This second type of supporting
polygon is called a SE-ME supporting polygon.

In another case of the present method a different type of
supporting polygon is formed between an inside corner vertex
of a first-order silhouette edge and an edge of the viewcell
(SE-MV supporting polygon also called a supporting tri-
angle).

In the context of the present invention, supporting poly-
gons are conservatively defined as being supported by a first-
order silhouette edge (also called a locally supporting edge),
or vertex thereof, and the corresponding viewcell, neglecting
any occlusion or interference between the first-order silhou-
ette edge and the viewcell. If a supporting polygon, as defined
by the present invention, intersects geometry between the
first-order edge and the viewcell, then the supporting polygon

10

20

35

40

45

55

42

is not a supporting polygon as defined in the prior art (which
does not generally allow a supporting polygon to be defined if
such interference exists).

As defined in prior-art a polygon would pass a “test for
support” (i.e. be a supporting polygon) between two struc-
tures if the polygon is supported by a vertex or edge of one
structure and a vertex or edge of the other structure without
intersecting anything else. The test for support also requires
that the extension of the supporting polygon (e.g. this exten-
sion is the “wedge”) in the direction away from the first
supported object (e.g. the viewcell) also does not intersect the
other supported structures (e.g. the polygon meshes) in a way
that causes it to be “inside” the other supported structure (e.g.
on the topological “inside” of a manifold mesh). This test for
support effectively requires a supporting edge to be an “out-
side” edge of the structure (e.g. a polygon mesh) which will
support a supporting polygon tangentially to the structure, as
opposed to an “inside” or reflex edge of a structure such as a
polygon mesh which will not.

In the present method this test for support is used in a more
limited way by including only the polygons sharing an edge
of'a mesh in the determination of whether the edge supports a
conservative supporting polygon between the viewcell and
the mesh (i.e., whether the edge is a “locally supporting” or
first-order silhouette edge, see definition of first-order silhou-
ette edge and locally supporting edge).

In cases where the difference between the present, conser-
vative, definition of the supporting polygon is distinguished
from the prior-art definition of the supporting polygon is to be
emphasized, a supporting polygon as defined by the present
invention may be called a conservative supporting polygon.
Otherwise a conservative supporting polygon as defined in
the present invention is simply called a supporting polygon.

As defined in the present invention, wedges derived from
(conservative) supporting polygons always form continuous
conservative linearized umbral event surfaces that can be
intersected with mesh polygons to conservatively determine
the set of mesh polygons (or fragments thereof) that are
visible from a viewcell, without the need for quadric surfaces
that usually dominate (and complicate) exact solutions.

In exemplary embodiments, for the terminology Conser-
vative Supporting Polygon see the above terminology for
supporting polygon

In exemplary embodiments, the terminology Test for Sup-
port refers to a polygon that would pass a “test for support”
(i.e. be a supporting polygon) between two polygonal struc-
tures if the polygon is supported by a vertex or edge of one
structure and a vertex or edge of the other structure without
intersecting anything else. The test for support also requires
that the extension of the supporting polygon (e.g. this exten-
sion is the “wedge”) in the direction away from the first
supported object (e.g. the viewcell) also does not intersect the
other supported structures (e.g. the polygon meshes) in a way
that causes it to be “inside” the other supported structure (e.g.
on the topological “inside” of a manifold mesh). This test for
support effectively requires a supporting edge to be an “out-
side” edge of the structure (e.g. a polygon mesh) which will
support a supporting polygon tangentially to the structure, as
opposed to an “inside” or reflex edge of a structure such as a
polygon mesh which will not.

In the present method this test for support is used in a more
limited way by including only the polygons sharing an edge
of'a mesh in the determination of whether the edge supports a
conservative supporting polygon between the viewcell and
the mesh (i.e., whether the edge is a “locally supporting” or
first-order silhouette edge, see definition of first-order silhou-
ette edge and locally supporting edge).

US 9,171,396 B2

43

In cases where the difference between the present, conser-
vative, definition of the supporting polygon is distinguished
from the prior-art definition of the supporting polygonisto be
emphasized, a supporting polygon as defined by the present
invention may be called a conservative supporting polygon.
Otherwise a conservative supporting polygon as defined in
the present invention is simply called a supporting polygon.

In exemplary embodiments, the terminology Conservative
Supporting Hull refers to a polygonal structure formed by the
conservative supporting polygons between one polyhedron
(e.g. a viewcell) and one or more other polyhedra (e.g. poly-
gon mesh objects). The pivot-and-sweep method is a method
of constructing a specific subset of the conservative support-
ing hull polygons between a viewcell and non-convex poly-
gon mesh objects.

The supporting hull is a generalization of the “convex hull”
which is important prior-art in computational geometry and
linear programming. The convex hull between two convex
polyhedral is a polygonal structure that contains all of the
“sightlines” of visibility between the two convex polyhedral.
Prior art methods of forming the convex hull between one
convex polyhedron (e.g. a viewcell) and another convex poly-
hedron (e.g. a convex polygon mesh) are well known and
important. These prior-art methods employ the construction
of supporting polygons between the two convex objects. (See
O’Rourke, Computational Geometry in C Second edition
Cambridge University Press 1998).

There is no apparent prior-art description for forming the
supporting hull between a convex polyhedron and one or
more non-convex polyhedra (e.g. polygon mesh objects used
in the present invention and which are ubiquitous in computer
graphics). An exact supporting hull would include not only
polygons but also quadric surfaces incident on compound
silhouette vertices.

In contrast, the set of conservative supporting polygons
that can be constructed using the pivot-and-sweep method of
the present invention can be easily supplemented (by adding
swept wedges incident on outside-corner vertices of the poly-
gon meshes) to form a continuous, conservative approxima-
tion to the exact supporting hull between a convex polyhedron
(e.g. the viewcell) and a one or more non-convex polyhedral.

The pivot-and-sweep method as specified in one embodi-
ment of the present invention constructs the subset of the
conservative supporting hull polygons that, when extended,
form wedges that, in combination, form conservative con-
tinuous umbral event surfaces which can be used to determine
the set of polygons visible from a viewcell without the need
for quadric surfaces.

Some polygons that would be included in the complete
conservative supporting hull are not constructed in the pivot-
and-sweep method in one embodiment because the corre-
sponding wedges (e.g. swept, or SE-MV wedges incident on
outside corner vertices of the polygon meshes) do not con-
tribute to the continuous umbral boundary separating what is
visible from the viewcell from what is occluded from the
viewcell.

In the pivot-and-sweep method these supporting polygons
are not identified. Consequently their corresponding wedges
are not constructed.

Alternate embodiments of the employing conservative
supporting polygons to construct the continuous umbral
event surfaces other than the specified pivot-and-sweep
method are possible. For example, alternate embodiments
can construct the entire complete conservative supporting
hull between a viewcell and polygon mesh objects and then
extend the edges of all of the supporting hull polygons to form
wedges. The wedges so formed include wedges (e.g. wedges

10

15

20

25

30

35

40

45

50

55

60

65

44

formed by extending supporting polygons supported by an
edge of the viewcell and an outside corner vertex of the
polygon mesh) that do not contribute to a continuous umbral
event surface. In such an alternate embodiment these super-
fluous wedges can be ignored or removed.

In exemplary embodiments, the terminology SVV (sup-
porting viewcell vertex) refers to, for a given mesh silhouette
edge, the first viewcell vertex that is encountered when piv-
oting a plane through the mesh silhouette edge in the direction
of the normal of the backfacing component polygon of the
silhouette edge. (see also supporting polygon)

In exemplary embodiments, the terminology Supporting
Viewcell Silhouette Contour (SVSC) refers to that portion of
the viewcell silhouette contour, as viewed from an inside
corner vertex of a mesh silhouette edge, that produces the
most extreme umbra boundary. This is the portion of the
viewcell silhouette contour which produces the least occlu-
sion when looking through the inside corner mesh silhouette
vertex from the viewcell silhouette. It is also the contour that,
when subjected to sweep operation, produces SE_MV
wedges that have a consistent orientation with the connected
SV-ME wedges and form a continuous surface. The support-
ing viewcell silhouette contour extends between two SVVs
that corresponding to the mesh silhouette edges which pro-
duce the inside corner vertex.

SE-MV wedges are oriented visibility event surfaces that
reflect the restriction of visibility at a mesh silhouette vertex
by virtue of containment on the viewcell surface.

In contrast, SV-ME wedges are oriented visibility event
surfaces that reflect the restriction of visibility at a mesh
silhouette edge by virtue of the (from-viewcell) occlusion
caused by the mesh polygon at the silhouette edge.

The SVSC is the set of (from mesh silhouette edge) view-
cell silhouette edges that produces corresponding SE-MV
wedges having a orientation that is consistent with the orien-
tation of adjacent SV-ME wedges; thus producing a continu-
ous, conservative, consistently oriented umbral event surface
at the mesh silhouette vertex.

In exemplary embodiments, for the terminology swept tri-
angle, see swept polygon.

In exemplary embodiments, the terminology swept poly-
gon (also called a swept supporting polygon or a swept tri-
angle) refers to the visibility event boundary at an non-convex
(or “inside”) corner of a first-order silhouette edge of a poly-
gon mesh is formed not only by extending those supporting
polygons supported by the silhouette edges forming the
inside corner, but possibly also by one or more swept poly-
gons which are a different type of supporting polygon formed
between the inside corner vertex of the mesh silhouette and
certain edges of the viewcell that are from-point silhouette
edges from the perspective of the inside corner silhouette
vertex of the mesh object. These from-point silhouette edges
of'the viewcell form a contour chain (the extremal or support-
ing viewcell silhouette contour) between the SVVs corre-
sponding to the inside corner edges of the mesh object. Poly-
gons (triangles) are “swept” out for each edge of this chain,
forming the swept polygons. The edges of these swept poly-
gons are extended to form SE-MV or swept wedges that also
contribute to the first-order visibility event surface at inside
corners of the mesh silhouette contour.

In exemplary embodiments, the terminology swept wedge
refers to a SE-MV wedge formed by extension of the edges of
a swept supporting polygon.

In exemplary embodiments, the terminology separating
polygon refers to a polygon that separates two structures. A
separating polygon between a silhouette edge of a polygon
mesh and a viewcell is, in the general case, formed by the

US 9,171,396 B2

45

silhouette edge and a vertex of the viewcell. The vertex of the
viewcell supporting this polygon is called the separating
viewcell vertex. It can be identified by pivoting the plane of
the backfacing component polygon of a silhouette edge,
wherein the pivoting occurs about the silhouette edge and in
a direction opposite of the normal of the backfacing compo-
nent polygon of the edge toward the viewcell until the plane
intersects the viewcell. This intersection will, in the general
case, occur at the separating viewcell vertex, which together
with the silhouette edge, forms a separating polygon that is a
triangle. If the separating viewcell vertex is a vertex of an
edge of the viewcell that is parallel to the silhouette edge of
the mesh then the pivoting plane will intersect the edge of the
viewcell, not just a single vertex, and the separating polygon
will be a quadrangle formed by the mesh silhouette edge and
the intersected viewcell edge. Used to determine the maxi-
mum deviation between a first-order UBP and a higher-order
UBP incident on a silhouette edge.

In exemplary embodiments, the terminology Umbra
Boundary Polygon (UBP) refers to a polygon that is part of
the umbra boundary formed by a polygon mesh object using
the viewcell as an area lightsource. A UBP may correspond to
the exact umbra boundary or may conservatively approxi-
mate the umbra boundary in a region. Constructed by exten-
sion of supporting polygons and swept polygons using the
pivot and sweep construction method of the present inven-
tion. On initial construction UBPs extend semi-infinitely
away from the viewcell. In subsequent steps of constructing
PAUSs, UBPs are intersected with each other, with mesh poly-
gons, and possibly with a bounding box surrounding all mesh
objects.

In exemplary embodiments, the terminology First-Order
UBP Refers to a polygon constructed using the pivot and
sweep method and alternate embodiments of the method
described in this specification.

In exemplary embodiments, the terminology First-Order
SV-ME UBP (Source Vertex-Mesh Edge UBP) refers to a
polygon constructed by extending the corresponding support-
ing polygon (SV-ME Supporting Polygon) between a mesh
silhouette edge and a viewcell vertex.

In exemplary embodiments, the terminology First-Order
SE-MV UBP (Source Edge-Mesh Vertex UBP) refers to a
polygon constructed by extending the corresponding swept
polygon (SE-MV Swept Polygon) between a mesh silhouette
contour inside corner vertex (of a simple or composite silhou-
ette contour) edge and a viewcell vertex.

In exemplary embodiments, for the terminology SV-ME
Supporting Polygon, see SV-ME UBP.

In exemplary embodiments, for the terminology SE-MV
Swept Polygon, see SE-MV UBP.

In exemplary embodiments, the terminology Higher-order
UBP refers to a UBP constructed using a higher-order model
of visibility propagation in polyhedral environments. This
model accounts for portions of the light source (eg. viewcell)
that may be occluded from an exposed silhouette edge. A
higher-order UBP may more precisely approximate the actual
umbra boundary in a region where the umbra boundary is
actually formed by higher order (quadric) surfaces formed by
edge-edge-edge (EEE) interactions. In the present method
higher-order UBPs are constructed using the method of back-
projection.

A higher-order UBP may be incident on a first-order sil-
houette edge, in which the higher-order UBP is called an
adjusted UBP. Alternatively a higher-order UBP may be inci-
dent on a higher-order silhouette edge. The higher-order sil-
houette edge may be computed if the adjusted UBP violates
local visibility.

25

35

40

45

50

55

46

In exemplary embodiments, the terminology backprojec-
tion refers to a determination of the portion of a viewcell
(light source) visible from a silhouette edge. In the present
method this determination employs the pivot and sweep
method of PAU construction using a silhouette edge as a light
source.

In exemplary embodiments, the terminology VSVV (Vis-
ible Supporting Viewcell Vertex) refers to a vertex determined
for a mesh silhouette edge or edge segment: the supporting
viewcell vertex that is actually visible from the edge. Deter-
mined by the method of backprojection. Used to construct
adjusted SV-ME UBPs.

Inexemplary embodiments, the terminology Visible Extre-
mal Viewcell Contour refers to the extremal viewcell contour
that is actually visible from an inside corner vertex of a mesh
silhouette. Used to construct the swept polygons that are
extended to form higher-order SE-MV UBPs.

In exemplary embodiments, the terminology Simple Sil-
houette Contour refers to a chain of silhouette edges con-
nected by shared vertices belonging to a single mesh object.
Also called a simple contour.

In exemplary embodiments, the terminology Compound
Silhouette Contour refers to a chain of silhouette edges com-
prising silhouette edges connected by shared vertices or con-
nected by vertices formed by the intersection of a wedge/UBP
from one contour with a non-adjacent silhouette edge. In the
study of smooth manifolds such an intersection is called a
t-junction. (See Durand, Fredo PhD thesis University of
Grenoble)

In exemplary embodiments, for the terminology T-Junc-
tion, also called a compound silhouette vertex (CSV), see
Compound Silhouette Contour.

In exemplary embodiments, the terminology PAU (Poly-
hedral Aggregate Umbra) refers to a polyhedron forming the
boundary of an umbra cast by one or more polygon mesh
objects using the viewcell as a lightsource. The PAU is rep-
resented as a polygon mesh comprising UBPs and visible
fragments of polygon mesh objects.

In exemplary embodiments, the terminology TRI-VC
SHAFT (TrianglexViewcell shaft) refers to a shaft (support-
ing shaft or convex hull) between a mesh triangle and a
convex viewcell.

In exemplary embodiments, the terminology SEG-SILE
SHAFT refers to a 2D shaft between a MSEGMENT and a
silhouette edge. Used in 2D version of mesh traversal to find
intersection of UBP with mesh polygons.

In exemplary embodiments, the terminology UBL (Umbra
Boundary Line) refers to a 2D equivalent of UBP, formed
between a vertex of a silhouette edge and a mesh silhouette
vertex.

In exemplary embodiments, the terminology PLAU
(Polyline Aggregate Umbra) refers to a 2D equivalent of PAU,
restricted to the surface of a UBP.

In exemplary embodiments, the terminology viewcell sil-
houette contour refers to a Silhouette contour of the viewcell
as viewed from some element of the triangle mesh.

In exemplary embodiments, polygon meshes can be repre-
sented as directed graphs. In Exemplary embodiments, the
terminology mesh traversal refers to a traversal of such a
graph is a procedure which visits the nodes of the graph. In
exemplary embodiments, mesh traversal may follow a
breadth-first order in which the edge-neighboring polygons
are examined. Other traversal orders are possible.

In exemplary embodiments, for the terminology Support-
ing Viewcell Vertex, see SVV.

In exemplary embodiments, the terminology Supporting
Viewcell Edge (SVE) refers to an edge of the viewcell which

US 9,171,396 B2

47

is parallel to corresponding mesh silhouette edge. Supporting
polygon between the two edges is a quadrangle.

In exemplary embodiments, the terminology Visible Sup-
porting Viewcell Edge (VSVE) refers to a portion of the SVE
that is visible (unoccluded) from the entire corresponding
silhouette edge.

In exemplary embodiments, the terminology SOSC (sig-
nificantly occluding silhouette contour for a viewcell transi-
tion.

In exemplary embodiments, the terminology SESC refers
to a significantly exposing silhouette contour for a viewcell
transition.

In exemplary embodiments, the terminology silhouette
contour of a manifold mesh refers to a fold singularity of the
manifold corresponding to a transition between visibility and
occlusion. For a polyhedral manifold mesh the silhouette
contour is piecewise linear, a polyline.

In exemplary embodiments, the terminology Cusp refers to
a point singularity of a silhouette contour representing the
terminus of a silhouette contour. Non-convex manifold
meshes may have multiple cusps, each corresponding to the
terminus of a silhouette contour.

In exemplary embodiments, the terminology CSV (Com-
pound Silhouette Vertex) refers to the point of intersection of
a wedge and a silhouette edge. For a first-order implementa-
tion the wedge is a first-order wedge and the silhouette edge
is a first-order silhouette edge. In topological terms the CSV
corresponds to a conservatively defined t-vertex of the from-
region compound silhouette contour. Typically an inside cor-
ner of the compound mesh silhouette contour occurs ata CSV.

A much less common type of CSV can theoretically occur
where a wedge intersects a silhouette vertex. This degenerate
case can correspond to an outside corner of a compound
silhouette contour.

Corresponds to a t-vertex.

In exemplary embodiments, the terminology Wedge refers
to a triangle formed between a supporting vertex of a light-
source/viewcell and a silhouette edge (SE-MV wedge). When
the silhouette edge is parallel to an edge of the lightsource/
viewcell the wedge is formed between the silhouette edge and
the supporting lightsource/viewcell edge. In this case the
(SE-ME) wedge is quadrangular.

Wedges used in discontinuity mesh methods are not
defined on segments which are occluded between the source
and the silhouette. This type of wedge results in planar vis-
ibility event surfaces which are exact but which do not nec-
essarily produce continuous umbra boundaries.

In contrast, first-order wedges are defined as an extension
of the entire supporting triangle or quadrangle between the
viewcell and the silhouette edge. The first-order wedge
results in planar visibility event surfaces which may be exact
or conservative but which always produces a continuous
umbra boundary.

In further embodiments, a wedge is any desired polygon
between the viewcell and a polygon mesh.

A wedge is different from a UBP (umbra boundary poly-
gon) in that the extent of a wedge is limited only by intersec-
tion with a mesh polygon. The structure of a UBP is deter-
mined not only by intersection with mesh polygons but also
by intersection with other UBPs. In fact a UBP is formed from
a corresponding wedge which is intersected with other
wedges and with mesh polygons to form the UBP. The set of
UBPs for a manifold defines the umbra boundary of the
manifold and is a subset of the wedges for the manifold.

10

15

20

25

30

35

40

45

50

55

60

48

The PAU can be constructed by forming the UBPs directly
using wedge-wedge and wedge-mesh polygon intersections.
In this case geometry inside a PAU is determined using a
point-in-polyhedron test.

Alternatively, the PAU can be constructed indirectly, with-
out wedge-wedge intersections, by traversing only the visible
side of the wedge-polygon intersections. In this case geom-
etry inside the PAU is determined using a wedge penetration
test of a line between the geometry and the surface of the
viewcell.

In exemplary embodiments, the terminology First-Order
Visibility (also called first-order model of visibility propaga-
tion) refers to a model of from-region visibility propagation in
which from-region umbral event surfaces are incident on
(first-order) visible, first-order silhouette edges and are con-
structed (using the pivot and sweep method) which assumes
that the entire view region (e.g., viewcell) is visible from the
first-order silhouette edge.

In exemplary embodiments, the terminology Higher-Order
Visibility refers to a model of visibility propagation which
does not assume that the entire view region (e.g., viewcell) is
visible from the edges of the model. Where the supporting
viewcell element corresponding to a first-order silhouette
edge (e.g., SVV or SVE) is not visible from the first-order
edge then the corresponding first-order event surface is inex-
act. In this case a more precise from-region event surface can
be constructed by backprojection: using the first-order silhou-
ette edge as a source and determining the corresponding
visible supporting viewcell element (vertex or edge). This
backprojection process can employ the first-order model or
may itself employ higher-order visibility (by finding the SVV
of the source silhouette edge). By subdividing first order
edges that are inexact and optionally allowing the silhouette
contour to retract the process of backprojection produces an
umbral event surface that, in the limit, converges on the exact
quadric event surface.

In exemplary embodiments, the terminology backfacing
refers to an orientation of a polygon. An oriented polygon has
one front side and one back side. Each polygon is contained in
a plane which also has a corresponding front side and back
side. If a polygon is backfacing with respect to a point, then
the point is on the back side of the polygon’s plane. One test
to determine if polygon is backfacing with respect to a point
employs the equation of the polygon’s plane.

The orientation of a plane is determined by its normal
vector which is defined by the coefficients A, B, and C of the
plane equation:

Ax+By+Cz+D=0

A point (xp, yp, Zp) is on the back side of this plane if it
satisfies the inequality:

A(xp)+B(yp)+C(zp)<0

Otherwise the point is on the plane or on the front side of the
plane.

A polygon may also be oriented with respect to another
polygon. If two polygons share an edge, then one method of
determining their orientation is to select a vertex of polygon 2
that is not a vertex of the shared edge. Next, determine if the
selected vertex is on the back side of the plane of polygon 1,
in which case the two polygons are backfacing, otherwise
they are front facing (or in the same plane). The aforemen-
tioned objects and advantages, as well as other objects and
advantages, are achieved in accordance with the present
embodiments which include a method of conservative, from-
region visibility precomputation in which polygon fragments

US 9,171,396 B2

49

potentially visible from a polyhedral viewcell are determined
by constructing a conservative, linearized, from-viewcell vis-
ibility map.

In one embodiment the mesh objects are comprised of
closed manifold triangle meshes (in which each edge is
shared by exactly two triangles) although embodiments using
other polygon meshes are possible. The method also accom-
modates non-closed manifold polygon/triangle meshes in
which each edge is shared by one or two triangles.

The conservative visibility map is constructed from the
mesh triangles using conservative linearized umbral event
surfaces (CLUES) which contain conservative from-viewcell
umbral boundaries.

The CLUES, which are also called first-order wedges or
simply wedges in this specification, are from-feature visibil-
ity event surfaces that are related to the wedges employed in
discontinuity meshing methods; although they differ from
discontinuity mesh wedges in important respects.

The CLUES are constructed on specific edges (and vertices
of these edges) of the triangle meshes (called first-order sil-
houette edges) using a novel simplified model of visibility
propagation in polyhedral environments called first-order
visibility. The present invention includes methods for con-
struction of first-order CLUES and for adaptively refining the
first-order CLUES to produce more precise conservative lin-
earized umbral event surfaces. These refined CLUES reflect
higher-order visibility effects caused when the entire viewcell
is not visible from the supporting silhouette edge. These
higher-order refined linear event surfaces tend to conserva-
tively approximate the exact (often quadric) umbral bound-
aries using conservative polygonal surfaces that are much
simpler to employ. According to some embodiments, refine-
ment of the first-order event surfaces is conducted where the
maximum deviation between the first-order event surface and
the higher-order event surface exceeds a predetermined
value.

In some embodiments, the refinement process is conducted
by backprojection in which the silhouette edge supporting a
CLUES is used as a lineal light source to determine the
portion of the viewcell visible from the edge.

The first-order model of visibility propagation is based on
the simplifying conservative assumption that if a silhouette
edge is visible from a viewcell, then it is visible from all parts
of the viewcell. This assumption leads to a simple definition
of first-order silhouette edges as those edges for which one
component triangle is backfacing for all points on the view-
cell and the other component triangle is frontfacing for at least
one point on the viewcell, and further that the component
triangles are not facing each other. This definition is effec-
tively identical to the definition of a from-point silhouette
edge and reflects the fact that the first-order model effectively
treats the viewcell as a viewpoint in some important respects.

One type of CLUES, called a source vertex-mesh edge, or
SV-ME wedge, is constructed on first-order silhouette edges
using a simple pivot from the edge to the supporting point of
the viewcell. These SV-ME CLUES are analogous to from-
point umbral boundary polygons that are used in shadow
algorithms. Unlike from-point umbral boundary polygons,
the SV-ME CLUES alone do not necessarily form a continu-
ous umbral boundary surface on non-convex manifolds.

In the first-order method, a second type of CLUES (called
a source edge-mesh vertex, or SE-MV wedge) is constructed
which join the aforementioned SV-ME wedges (constructed
by pivot) into a continuous umbral event surface. This second
type of CLUES is formed by a sweep operation at an inside
corner mesh silhouette vertex where the previously described
SV-ME type of wedge from adjacent silhouette edges do not

40

45

50

otherwise form a continuous umbral event surface. In such a
case the SV-ME wedges incident on adjacent first-order sil-
houette edges are connected to form a continuous umbral
event surface by the SV-ME wedges incident on the connect-
ing inside corner mesh silhouette vertex.

SE-MYV wedges are constructed from supporting polygons
formed by a sweep operation anchored at the inside corner
mesh silhouette vertex and sweeping across edges of the
viewcell which are silhouette edges when viewed from the
inside corner mesh silhouette vertex. The inside corner mesh
silhouette vertex may be a vertex of a simple silhouette,
formed by connected first-order silhouette edges. Alterna-
tively the inside corner mesh silhouette vertex may be a
compound silhouette vertex (CSV) formed where a first-
order wedge intersects another silhouette edge. These corre-
spond to t-vertices of the from-region visible manifold and
typically correspond to quadric event surfaces when using
exact from-region visibility solutions. By constructing SE-
MYV wedges on the CSVs, the present method insures that a
continuous, conservative, linearized from-region umbral
event surface is generated which reflects the intrinsic
occluder fusion of a compound silhouette contour but without
using quadric surfaces.

Table Ib shows the four types of visibility event surfaces as
employed in the method of complete discontinuity meshing
also shown in Table Ia. In table Ib the visibility event surfaces
of the present invention, CLUES, are also presented and
compared to the visibility event surfaces employed in com-
plete discontinuity meshing. Note that the Jenkins Nomen-
clature does not include quadric (EEE) surfaces since, in the
visibility propagation model of the present invention, these
quadric surfaces are replaced with SV-ME and SE-MV planar
surfaces in the first-order version of the method and back-
projection SV-ME/SE-MV using higher-order refinement
embodiment of the method.

TABLE Ib

Nomenclature of From-Region Visibility Event Surfaces

Drettakis et al. Jenkins CLUES

Visibilty Event Surface Naming Nomenclature
Planar Event Surface E-EV (Emitter- SV-ME (Viewcell Vertex -
Containing a Feature of the Edge Vertex) Mesh Edge)
Emmitter/Viewcell/Source SE-MV (Viewcell Edge -

Mesh Vertex)

SE-ME (Viewcell Edge -

Mesh Edge)(Special Case)
Planar Event Surface Not NonE-EV Backprojection SV-ME
Containing a Feature of the Backprojection SE-MV
Emitter/Viewcell/Source Backprojection SE-ME
Quadric Event Surface Emitter-EEE, Approximated By
Containing a Feature ofthe E_EE Backprojection Event
Emitter/Viewcell/Source Surfaces
Quadric Event Surface Not Non- Approximated By
Containing a Feature of the EmitterEEE Backprojection Event
Emitter/Viewcell/Source Surfaces

In one embodiment, the construction of the from-viewcell
visibility map using CLUES can employ the prior-art meth-
ods of discontinuity mesh construction in which the CLUES
are substituted for the linear and quadric “wedges™ that are
used in discontinuity meshing. This embodiment is not opti-
mal since the discontinuity meshing approach is not output-
sensitive. In the prior art method of discontinuity meshing,
event surfaces are generated on all silhouette edges even
though many of'these silhouette edges may be occluded from
the viewcell. In this approach, the visibility of the disconti-
nuity mesh regions is determined after all of the discontinuity

US 9,171,396 B2

51

mesh regions have been constructed. For densely occluded
environments many of these constructed regions are com-
pletely occluded from the viewcell. As a result, the complex-
ity of the arrangement of the discontinuity mesh regions can
be much higher than the complexity of the visible component
of'the discontinuity mesh (which corresponds to the visibility
map).

In another embodiment, the CLUES are used to construct
the actual from-viewcell umbra volumes, called polyhedral
aggregate umbrae (PAU), which are comprised of the CLUES
and the unoccluded mesh triangle fragments. The purpose of
the method is to determine only the unoccluded mesh triangle
fragments (which comprise the potentially visible set or
PVS). The construction of the entire PAU (which requires
potential intersection of all of the CLUES) is typically not
necessary to determine the unoccluded triangle mesh frag-
ments. Instead, the unoccluded mesh triangle fragments can
be more efficiently determined by the direct construction of a
from-region visibility map.

Therefore, the present invention includes an output-sensi-
tive method of conservative linearized visibility map con-
struction, which is based on the traversal of triangle mesh
2-manifolds (embedded in R3). In this method, a breadth-first
traversal of the unoccluded triangle mesh manifolds is con-
ducted. Traversal of a triangle is suspended if any potentially
occluding triangles (those triangles in the shaft between the
triangle and the viewcell) have not been traversed and the
traversal is jumped to the closer, unprocessed triangles. This
approach enforces a front-to-back order. Manifold mesh tra-
versal proceeds to the silhouette contours of the mesh or to
from-viewcell occlusion boundaries. The from-viewcell sil-
houette contours are treated as the catastrophic visibility
event curves of the manifold. At these contours, the corre-
sponding CLUES are constructed and cast into the environ-
ment to determine their intersection with the mesh triangles.
This casting is itself an on-surface (e.g., on wedge) visibility
problem encountered in discontinuity meshing and has pre-
viously been solved using conventional techniques such as
Weiler-Atherton algorithm, which is not output-sensitive.
Alternatively, the present method includes a technique in
which this on-wedge visibility problem is solved using a
simplified version of the 2-manifold traversal (now being
described) applied to the 1-manifolds encountered in the on-
wedge or on-CLUES visibility problem. For simplicity, the
present specification frequently uses the terms wedge, first-
order wedge, and CLUES interchangeably, although it is
shown that the first-order wedge, which is used in the present
method, differs in important respects from the wedge con-
structed in the prior-art method of discontinuity meshing.

The on-wedge visible intersections of the umbral event
surfaces and the manifold mesh triangles correspond to the
segments of the from-viewcell umbral discontinuity mesh but
may not be actually segments of the corresponding from-
viewcell visibility map occlusion boundaries. This is because
a wedge represents the visibility of triangle segments from a
specific feature (vertex or edge) of the viewcell, not neces-
sarily an umbral boundary from the entire viewcell. In one
embodiment of the present method, each umbral discontinu-
ity mesh segment is tested to determine ifitis a from-viewcell
occlusion boundary at the time it is constructed.

By enforcing a front-to-back processing order and con-
structing occlusion boundaries when they are encountered,
the mesh traversal largely avoids the traversal of occluded
triangles and thereby tends to achieve output-sensitive per-
formance. In this output-sensitive method, the manifold tra-
versal effectively cascades off the silhouette contours, flow-
ing onto other manifolds intersected by the occlusion

30

40

45

55

60

52

boundaries corresponding to visibility event surfaces. Tra-
versal is continued only on the unoccluded side of an occlu-
sion boundary in a manner that realizes an output-sensitive
visibility cascade.

The resulting output-sensitive performance is achieved at
the cost of having to test each unoccluded mesh element for
unprocessed, potentially occluding elements using a triangle-
viewcell shaft. In the present method, the cost of these shaft
inclusion tests is greatly reduced by employing a hierarchical
spatial subdivision and intersecting the shaft with these hier-
archical containing structures. This results in an overall cost
for all shaft inclusion tests that tends towards O(N Log(M)),
where N is the number of visible mesh elements traversed and
M is the average number of potentially occluding mesh ele-
ments.

Mesh polygons are processed by mesh traversal initiated at
strongly visible polygon fragments and continuing traversal
to either a) origin of the conservative linearized umbral
boundary wedges at silhouette edges or b) intersection of the
wedges (forming a true from-viewcell occlusion boundary)
with the mesh polygons. To insure proper depth order the
mesh traversal algorithm identifies any unprocessed, poten-
tially occluding mesh elements and immediately shifts mesh
traversal to the closer untraversed elements. Ambiguous
depth-order between mesh elements is detected by maintain-
ing a directed graph representing the triangle overlap rela-
tionships and identifying cycles in this graph using a linear-
time algorithm such as Tarjan’s algorithm. Where cycles exist
the triangles in the viewcell-triangle shaft of the offending
triangle are intersected with the shaft to identify portions of
these overlapping triangles that are completely within the
shaft. These components cannot form a cycle with the offend-
ing triangle since they are completely within the shaft. Reini-
tiating the traversal using these components breaks the cycle.

By enforcing a front-to-back traversal of meshes, terminat-
ing traversal at occlusion boundaries, and employing hierar-
chical spatial subdivision, the algorithm is designed to
achieve output sensitive performance even for densely
occluded environments.

One advantage of the mesh traversal/visibility map con-
struction method is that it is more efficient at identifying
occlusion than algorithms such as Volumetric Visibility,
Extended Projection, and Weiler-Atherton. All of these other
methods depend on large convex occluders which are unusual
in realistic models. For example, the Weiler-Atherton algo-
rithm, which is a from-point visibility algorithm, can com-
bine the occlusion of connected polygons (a process they call
consolidation) only if the connected polygons form a convex
polyhedra. Likewise, the Volumetric Visibility (Schuaffler et
al. 2000) method depends on simple shafts formed between
the viewcell and a single convex box shaped blocker that is
inside the actual occluder. If the actual occluder is concave
and or has topological holes then it can be difficult to identify
such a simplified convex blocker that accurately represents
the occlusion of the actual occluder.

In contrast, the present invention does not depend on the
presence of convex occluders, but rather directly exploits the
occlusion coherence inherent in the connectivity of a mani-
fold mesh, irrespective of the mesh’s shape.

The present method includes a technique of determining
the “effective static occlusion” (ESO) of occluded regions of
the visibility map. The eftective occlusion of a region is a ratio
reflecting the number and surface area polygons occluded in
an occlusion region divided by the additional geometry cre-
ated during the remeshing caused by the region.

The precision of the visibility maps produced by the
present method can be decreased by a conservative convex

US 9,171,396 B2

53

simplification of the silhouette contours employed. This can
be useful when the occlusion boundary surrounding an
occluded visibility map region contains too much detail,
especially if the effective occlusion of the region is low. The
effective static occlusion is used as a heuristic to control the
simplification of the silhouette contours and therefore the
precision of the corresponding visibility map/PVS.

The precision of the visibility map can also be selectively
increased, using the backprojection approach to higher-order
refinement previously discussed. The control of this adaptive
refinement toward the exact quadric event surfaces is also
determined, in part, by the ESO metric.

Storage requirements are reduced by using an intermediate
delta-PVS representation wherein important silhouette
edges, those which produce significant occlusion or expo-
sure, are identified during the precomputation by identifying
the corresponding regions of coherent occlusion or exposure.

The present invention includes a method of directly iden-
tifying the polygons or polygon fragments of a model that are
exposed or occluded during a specific viewcell transition. The
list of newly visible polygons or polygon fragments for a
viewcell transition is called the deltaG+ submesh. The list of
newly occluded polygons or polygon fragments for a viewcell
transition is called the deltaG- submesh.

The present invention includes a method of identifying
coherent regions of newly occluded and newly exposed
regions for a viewcell transition by computing the visibility
maps for each viewcell and traversing the resulting visibility
map for one viewell to the occlusion/exposure boundaries of
the other viewcell. This approach is used to identify con-
nected regions of exposure/occlusion. The effective occlu-
sion of these regions is measured using the same approach as
the effective static occlusion previously described. In the case
of these deltaG regions, the effective occlusion is called the
effective dynamic occlusion (EDO). The EDO is used to
identify regions of coherent effective differential visibility.

The visibility PVS data for one viewcell can be generated,
in the usual way, from an existing PVS and the stored deltaG+
and deltaG- data for the viewcell transition.

Alternatively, silhouette contours which form such regions
of high EDO are identified and labeled during an offline
precompute phase. These labeled silhouette contours are the
basis of an intermediate representation of the delta-PVS
which substantially reduces the storage requirements com-
pared to directly storing all deltaG+ and deltaG- submesh
data for each viewcell transition.

In this intermediate visibility map/PVS representation, the
dynamically exposing or dynamically occluding silhouette
contours (bounding regions of high EDO) are labeled. The
regions of coherent, high EDO are identified, in an offline
preprocess, using a simple traversal of a unified visibility map
which contains occlusion boundaries for both viewcells of a
particular transition.

The silhouette labels are stored with the triangle mesh data
along with occlusion boundary intersection hints for each
viewcell transition. The occlusion boundaries are boundaries
of the from-region visibility map produced by the umbral
event surfaces incident on a labeled silhouette contour. Both
the labeled silhouette contour and the corresponding occlu-
sion boundary form polylines. The complete silhouette con-
tour (and corresponding occlusion boundaries) can be con-
structed at runtime from a few labeled silhouette edges (and
corresponding occlusion boundary segments) using simple
algorithms for finding connecting silhouette edges and poly-
gon-polygon intersections.

According to some embodiments, for simple silhouette
contours, an entire labeled silhouette contour can often be

10

15

20

25

30

35

40

45

50

55

60

65

54

stored by labeling only a single starting edge of the contour.
The remaining connecting first-order silhouette edges that
form the contour can be rapidly identified at runtime. This
scheme makes the intermediate representation using labeled
silhouette contours very storage efficient.

According to some embodiments, for compound silhouette
contours (formed where the umbral event surfaces incident on
one simple silhouette contour intersect another silhouette
contour) the storage scheme is similar except that the com-
pound silhouette vertices (CSVs) representing the intersec-
tion points of the simple contours are also stored.

Using the intermediate representation, the visibility map/
PVS for one viewcell can be generated from the visibility map
of a previously constructed, parent (containing) viewcell
using a simplified traversal. This traversal of a parent visibil-
ity map proceeds to labeled occluding silhouette contours
which support umbral event surfaces that produce new occlu-
sion boundaries which effectively bypass newly occluded
mesh elements. This approach obviates the need for storing
deltaG- information and deltaG+ information for viewcell
transitions between child viewcells having a common parent.
This method of incrementally generating visibility map/PVS
at runtime using only labeled significantly occluding silhou-
ette contours is particularly useful in a distributed client-
server implementation, since the client can use it to remove
newly occluded geometry for a viewcell transition without
receiving explicit deltaG- information from the server.

In addition to being used to directly generate the visibility
map/PVS for a viewcell, the labeled silhouette contours can
also be used to generate delta-PVS data when needed. Using
this approach, according to some embodiments, the delta-
PVS data (e.g., deltaG+ and deltaG- submesh data) is not
stored but generated when needed using the labeled silhouette
contour information, an existing visibility map, and (for
deltaG+ submesh data) a superset of the current visibility
map/PVS that is guaranteed to contain the newly visible
geometry for a viewcell transition. In some embodiments, the
latter superset information can be provided as stored deltaG+
submesh data for a parent viewcell that contains the child
viewcells for which the specific parent-to-child viewcell tran-
sitions occur.

Using these three data sets, the parent-to-child deltaG+ and
deltaG- data for a specific viewcell transition is generated by
a simplified traversal of a previously constructed visibility
map corresponding to a parent viewcell. The labeled silhou-
ette contours (and associated occlusion boundary hints) are
used to quickly construct the visibility map/PVS of the child
viewcell from that of the parent. Alternatively, the deltaG+
and deltaG- data can be explicitly generated by traversal of
the newly exposed and newly occluded regions respectively.
The latter method is useful in a client-server implementation
in which the server is a visibility event server which delivers
deltaG+ and/or deltaG- submesh data to the client using
navigation-based prefetch.

Alternatively, only the deltaG+ data for a viewcell transi-
tion may be stored explicitly, and the deltaG- data generated
by the simplified traversal of a parent viewcell. In this imple-
mentation, a simplified (and fast) traversal of a parent visibil-
ity map proceeds to labeled occluding silhouette contours
which support umbral event surfaces that produce new occlu-
sion boundaries which effectively bypass newly occluded
mesh elements.

This delta-PVS method represents an efficient codec for
visibility-based streaming of out-of-core geometry and tex-
ture information in which the dynamic occluding or exposing
silhouette contours (for the viewcell-to-viewcell transitions)
are identified and labeled in an off-line, precomputed encod-

US 9,171,396 B2

55

ing; and the resulting labeled contours, along with other hint
information, are used to rapidly construct a PVS/visibility
map (or deltaG submesh data) from an existing PVS/visibility
map at runtime. This codec allows for a distributed client-
server implementation in which the storage/transmission
costs can be selectively decreased at the expense of increased
runtime compute costs.

In addition, a perception-based encoding strategy is used to
encode low level-of-detail (LOD) geometric and texture
information during periods when the deltaG+ submesh infor-
mation is not delivered to the client in time to generate a
complete PVS for the current viewcell/viewpoint. This strat-
egy exploits the fact that the human visual system cannot fully
resolve information that it presented to it for less than
approximately 1000 milliseconds. This approach allows a
relatively perceptually lossless performance degradation to
occur during periods of low spatiotemporal visibility coher-
ence: a situation which challenges the performance of both
the codec and the human visual system in similar ways.

Details of this codec and its use in a client-server method
streaming content delivery employing navigation-based
prefetch are disclosed in the specification.

Table Ic summarizes a number of the prior-art methods of
PVS determination and shadow calculation which employ the
various visibility event surfaces characterized in Table la. The
last row of the table includes the current method of from-
viewcell delta-PVS determination using the methods of the
present invention including first-order and higher-order con-
servative, linearized, umbral event surfaces (CLUES).

TABLE Ic

10

15

20

56

The exact visibility in polyhedral environments is domi-
nated by quadric visibility event surfaces which arise as a
result of visibility interactions among triples of edges. In
contrast, the first-order model of considers visibility event
surfaces which arise as a result of visibility interactions
between pairs of edges. Using the methods disclosed herein,
first-order visibility model produces continuous, conserva-
tive umbral event surfaces which can be used to construct
conservative from-viewcell visibility maps and related from-
viewcell potentially visible sets (PVS).

The first-order model of visibility propagation is based on
the simplifying conservative assumption that if a silhouette
edge is visible from a viewcell then it is visible from all parts
of'the viewcell. This assumption leads to a simple definition
of first-order silhouette edges as those edges for which one
component triangle is backfacing for all points of the viewcell
and the other component triangle is frontfacing for at least one
point of the viewcell, and further that the component triangles
are not facing each other. This definition is effectively iden-
tical to the definition of a from-point silhouette edge and
reflects the fact that the first-order model treats the viewcell as
a viewpoint in some important respects.

In first-order visibility, any segment of a silhouette edge is
assumed to be either completely occluded from the viewcell
or completely visible from the viewcell (visible from all parts
of'the viewcell). That is, in first-order visibility, if a silhouette
edge is visible from any part of the viewcell, it is assumed to
be visible from all parts of the viewcell.

PVS and Shadow Methods

Umbral Event Solution
Method Purpose Model Surfaces Space PVS Precision
Teller(1992) PVS BSP/Portals E-EV,NonE-EV Object Cell-to-Object
Carmack(1996) PVS BSP/Portals E-EV Object Cell-to-Cell
Chin-Feiner Shadow General 3D E-EV Object NA
Koltun(2000) PVS 2.5D E-EV,NonE-EV Object Cell-to-Object
Discontinuity Umbra & General 3D E-EV,NonE-EV, Object NA
Mesh, Drettakis ~ Penumbra E-EEE,
(1994) Shadows NonE-EEE
Extended dPVvs Convex E-EV Image Cell-to-Polygon
Projection Occluders (Effectively
Durand(2000) (Non- Sampled on
Convex = Planes)
Special)
Volumetric PVS 2.5D E-EV Object Cell-to-Cell
Visibility Voxelized (Approximate)
Schauftler (2000)
Shrunk PVS 2.5D All Image Cell-to-Object
Occluders (Sampled,
Wonka(2000) Approximated)
Vlod d-PVS & Simple3D E-EV Object/ Cell-to-Polygon
Chhugani(2005) Streaming Occluders, (Approximated, Image
Genus 0 Sampled)
Exact From- PVS General 3D All 5D Line Cell-to-Polygon
Viewcell Exact Space
Nirenstein
(2005), Bittner
(2002)
CLUES Jenkins d-PVS & General 3D E-EV,NonE-EV, Object Cell-to-Polygon
(2010) Streaming E-EEE (linearized Fragment
approximation)
60

Theory of Operation: Model of First-Order Visibility Propa-
gation

According to some embodiments, the present method
from-region visibility precomputation uses from-region vis-
ibility surfaces that are constructed using a simplified, con-
servative model of visibility propagation called first-order
visibility.

65

The first-order model does not account for the effects of
varying occlusion along a silhouette edge segment that is
caused by an edge intervening between the silhouette edge
and the viewcell to produce a quadric triple edge (or EEE)
visibility event surface. Instead the first-order visibility
model produces planar visibility event surfaces which either
correspond to the exact, planar from-region umbral event

US 9,171,396 B2

57

surfaces or conservatively lie within the exact quadric from-
region umbral boundaries, which are often quadric surfaces.
The first-order model of visibility propagation employs only
planar visibility event surfaces that arise from visibility inter-
actions between pairs of edges. Further, often the first-order,
planar visibility event surfaces are very close to the exact
event surfaces, which may be quadrics, and in many cases the
first-order event surfaces are the exact from-region visibility
(umbra) boundaries.

According to some embodiments, first-order visibility
event surfaces are generated using a simple pivot and sweep
algorithm. In one embodiment, the viewcell is assumed to be
convex. This assumption simplifies the pivot and sweep con-
struction method. Alternate embodiments of the pivot and
sweep method allow construction of first-order visibility
event surfaces from a non-convex viewcell. Any non-convex
viewcell can be decomposed into convex components for
example by tetrahedralization.

In some embodiments, first-order mesh silhouette edges,
which give rise to the first-order visibility event surfaces, are
identified using three criteria. In some embodiments, first-
order silhouette edges are defined as those edges of a mani-
fold triangle mesh which pass the following tests:

1) one triangle sharing the edge is back facing for all
vertices of the viewcell,

2) the other triangle sharing the edge is front facing for at
least one of the vertices of the viewcell,

3) the component triangles sharing the edge are backfacing
with respect to each other.

The first-order conservative linearized umbral event sur-
faces (CLUES), also called wedges, are of two types. In some
embodiments, the viewcell is also conceptually treated as a
“source” or lightsource.

According to some embodiments, one type of wedge is
formed by a vertex of the viewcell and a first-order silhouette
edge of the mesh (SV-ME). Another type of wedge is formed
by an edge of the viewcell and an inside-corner silhouette
vertex of the mesh (SE-MV). The SV-ME type is discussed
first.

According to some embodiments, to construct a SV-ME
wedge, the supporting triangle between a first-order silhou-
ette edge and the viewcell is identified. This triangle is formed
between the silhouette edge and a specific vertex of the view-
cell called the supporting viewcell vertex (SVV). The sup-
porting viewcell vertex corresponding to a first-order silhou-
ette edge is identified by testing the angle between the
backfacing triangle of the edge, and the triangles formed
between each viewcell vertex and the silhouette edge. The
vertex which produces a vertex-edge triangle forming the
smallest angle with the backfacing triangle (i.e., most nega-
tive cosine value) is the first vertex encountered in a “pivot” of
the plane of the backfacing triangle through the silhouette
edge. This viewcell vertex is the supporting viewcell vertex
for the corresponding mesh silhouette edge.

The first-order wedge incident on the first-order mesh sil-
houette edge is formed by the edge itself and two other edges,
each of which is a line through a vertex of the edge and the
supporting viewcell vertex (SVV) corresponding to the sil-
houette edge. These two edges extend semi-infinitely from
the SVV, through the silhouette vertices in the direction away
from the viewcell source. This wedge can be seen as an
extension of the supporting triangle formed between the sil-
houette edge and the corresponding supporting viewcell ver-
tex (SVV). As previously indicated, since this type of wedge
is formed from a silhouette edge of the mesh and a vertex of
the viewcell, it is called a SourceVertex-MeshEdge (SV-ME)
wedge.

25

40

45

58

A degenerate case may occur in which the pivot from the
mesh silhouette edge to the viewcell encounters two or more
supporting viewcell vertices (SVVs) producing the same
pivot angle. This occurs when an edge of the viewcell con-
taining the SVV(s) is parallel to the mesh silhouette edge. In
this case, the supporting triangle between the mesh silhouette
edge and the viewcell is actually a supporting quadrangle.
The present method handles this degenerate case by con-
structing a special SE-ME wedge.

In some embodiments, the pivot operation produces a SV-
ME wedge for each mesh first-order silhouette edge. How-
ever, the visibility event surface at the shared vertex of two
first-order silhouette edges is not necessarily completely
defined entirely by the intersection of the two adjacent SV-
ME wedges. While adjacent SV-ME wedges always intersect
at the shared silhouette vertex, at inside corners of the silhou-
ette contour these SV-ME wedges can intersect only at the
single point shared by their two supporting silhouette edges.
In this case, their intersection does not form a continuous
umbral surface across the portion of the silhouette contour.
The structure of the visibility event surface spanning the
silhouette contour at the shared silhouette vertex depends on
how the adjacent SV-ME wedges intersect.

According to some embodiments, a conceptual reverse
sweep operation can be used to determine whether adjacent
SV-ME wedges intersect to form a continuous umbra surface.
A reverse sweep operation in which a line segment anchored
atthe SVV is swept along the corresponding mesh silhouette
edge from vertex to vertex generates the same supporting
triangle formed in the previously described pivot operation.
Conceptually, however the reverse sweep operation can be
used to identify discontinuities of the visibility event surface
that may occur at the shared vertex of adjacent silhouette
edges.

If two adjacent mesh silhouette edges form an “outside
corner” or convex corner of a mesh manifold, then such a
reverse sweep operation would not encounter any restriction
to the sweep (i.e., occlusion) at the shared vertex. Conse-
quently, the SV-ME wedges corresponding to the adjacent
“outside corner” silhouette edges will intersect to form a
continuous visibility event surface which spans the two sil-
houette edges. SV-ME wedges incident on adjacent outside
corner first-order silhouette edges will intersect to form such
a continuous visibility event surface even if the supporting
triangles for the adjacent silhouette edges pivot to different
SVVs on the viewcell.

Conversely, if two adjacent mesh silhouette edges form an
“inside corner” or non-convex corner of a mesh manifold,
then the SV-ME wedges incident on these two edges may not
intersect at the shared silhouette vertex in such a way as to
form a continuous visibility event surface which spans the
adjacent mesh silhouette edges. Supporting polygons corre-
sponding to adjacent “inside corner” silhouette edges may
pivot to different SVVs on the viewcell. In such a case, the
adjacent SV-ME wedges will still intersect at the shared sil-
houette vertex but their intersection will not form a continu-
ous visibility event surface spanning the adjacent silhouette
edges. A reverse sweep operation anchored at the SVV and
sweeping through the silhouette edge would encounter a
restriction (occlusion) at such an inside corner vertex. This
restriction results in a discontinuity in the visibility event
surface formed by the adjacent inside corner SV-ME wedges.

The continuous visibility event surface at such an inside
corner can be constructed by reversing the previously

US 9,171,396 B2

59

described reverse sweep operation at the inside corner. The
sweep is now anchored at the shared inside corner mesh
silhouette vertex and sweeping occurs along the silhouette
edges of the viewcell, edges which are from-point silhouette
edges with respect to the inside corner mesh silhouette vertex,
starting at the SVV for one of the mesh silhouette edges and
ending at the SVV for the neighboring mesh silhouette edge.
Each swept viewcell silhouette edge forms a swept triangle
with the inside corner vertex. The edges of this triangle,
extended through the corresponding mesh silhouette edge,
defines a wedge. Since such wedges are formed from an edge
of the viewcell and a vertex of the mesh they are called
SE-MV wedges. Such a sweep operation conducted along the
(from-point) silhouette contour of the viewcell will produce a
set of SE-MV wedges that form a continuous visibility event
surface which connects the (otherwise disconnected) SV-ME
wedges of the adjacent mesh silhouette edges.

Conceptually, then, when the conceptual reversed sweep
operation anchored at the SVV encounters a restriction (oc-
clusion) at an inside corner of a first-order silhouette contour,
the reversed sweep operation is reversed. This reversal pro-
duces the actual sweep operation which constructs the swept
triangles and the corresponding SE-MV wedges that form a
continuous visibility event surface (first-order umbral event
surface) which connects the SV-ME wedges from the adja-
cent first-order mesh silhouette edges. This sweep operation
generates SE-MV wedges that are incident on a vertex of the
mesh silhouette contour and which reflect a visibility event
boundary that is primarily determined by a combination of
“occlusion” at the silhouette edges, reflected in the SV-ME
wedges, and containment of the viewpoint on the viewcell
surface, reflected in the SE-MV wedges incident on the sil-
houette vertex.

It should be noted that, for a convex viewcell, two paths of
connected viewcell silhouette edges will generally connect
one SVV to the other. Only one of these paths will sweep out
a chain of SE-MV wedges that connect the adjacent SV-ME
wedges to form a continuous visibility event surface having a
consistent face orientation. In some embodiments, this par-
ticular path is called the supporting viewcell silhouette con-
tour (SVSC). A test do identity the SVSC is presented else-
where in this specification.

According to some embodiments, for the construction of
first-order wedges, the conceptual reverse sweep operation
which would detect an occlusive restriction to visibility at the
inside corner mesh vertex can be replaced by another test.
This test involves comparing the normals of the adjacent
mesh silhouette edges. If the two connected mesh silhouette
edges have their normals oriented such that they are mutually
front facing, then the shared vertex is called an outside corner
of the mesh.

According to some embodiments, when an inside corner
mesh silhouette vertex is encountered, then the first-order
wedges through this vertex are generated by the sweep opera-
tion, wherein the sweep is anchored at the inside corner mesh
silhouette vertex is swept along the supporting viewcell sil-
houette contour (SVSC), from the SVV corresponding to one
silhouette edge to the SVV corresponding to the other silhou-
ette edge, generating SE-MV wedges.

The sweep operation to generate SE-MV wedges is con-
ducted only at inside corners of the silhouette contour. Con-
ducting this sweep at outside corner silhouette vertices would
generate superfluous SE-MV wedges that intersect the adja-
cent SV-ME wedges only at the silhouette vertex and there-
fore, they do not contribute to the continuous umbral event
surface of the supported silhouette contour.

10

15

20

25

30

35

40

45

50

55

60

65

60

As previously described, SE-MV wedges may arise at an
“inside corner” of the silhouette contour formed by connected
silhouette edges of a single mesh, called a simple contour.
More generally, SE-MV wedges may be incident on any
“inside” or non-concave edge of a polyhedral aggregate
umbra (PAU) surface. Such “inside corner” features can also
be formed where the wedge from two silhouette contours
(belonging to the same mesh or different meshes) intersect.
The intersection of a wedge from one contour with a non-
adjacent silhouette edge is called a composite or compound
silhouette vertex (CSV). In the study of smooth manifolds
such an intersection is called a t-junction. At a t-junction
intersection, the wedge of one silhouette edge intersects a
non-adjacent silhouette edge (from the same or different con-
tour). This t-junction intersection generally occurs in such a
way that the intersecting SV-ME wedges do not intersect with
each other at the t-junction to form a continuous event sur-
face. The resulting degenerate point of intersection of the two
SV-ME wedges at a first-order silhouette edge represents an
CSV.

At such CSV’s the present method employs the same
sweep operation previously described, anchored now at the
CSVs to generate the set of SE-MV wedges that connect the
otherwise disjoint SV-ME wedges into a continuous, conser-
vative umbral event surface. As will be discussed in detail in
another part of this specification, in general the exact umbral
event surface is a higher-order surface (e.g., a quadric). The
present invention includes a method of conducting the previ-
ously described sweep operation on CSVs in such a way that
the constructed wedges conservatively approximate the
actual higher-order surfaces incident on the CSV.

Theory of Operation: Relationship Between First-Order Vis-
ibility Event Surfaces and the Supporting Hull

According to some embodiments, the first-order model of
visibility propagation employs a new geometric construct
which is referred to as the supporting hull.

According to some embodiments, the supporting hull
between a polyhedral viewcell and a polyhedral mesh object
is a polyhedral volume that contains all of the possible sight
lines between the viewcell and the mesh object. The support-
ing hull is a polyhedron bounded by the supporting polygons
between the viewcell and the mesh object. Ifthe viewcell and
the mesh object are both convex, then the supporting hull is
identical to the convex hull and it can be constructed using
familiar gift wrapping algorithms (O’Rourke, Computational
Geometry in C Second edition Cambridge University Press
1998). In some embodiments, if the viewcell is convex but the
mesh object is not necessarily convex, then the supporting
polygons can be formed using the following algorithm.

Identify each first-order, from-region silhouette edge of the
mesh object as those edges which have one component tri-
angle that is backfacing for all vertices of the viewcell and the
other component triangle that is frontfacing for at least one
vertex of the viewcell, and for which the component triangles
are backfacing with respect to each other. For each of these
first-order silhouette edges, construct the supporting polygon
incident on the edge by pivoting from the edge, in the direc-
tion of the normal of the backfacing component triangle, to
the vertex of the viewcell which forms the smallest pivot
angle. This vertex, called the supporting viewcell vertex or
SVV, together with the endpoints of the first-order silhouette
edge, form the supporting polygon (generally a triangle) inci-
dent on the silhouette edge. This type of supporting polygon
is called a SV-ME (source vertex-mesh edge) supporting
polygon.

If this viewcell vertex happens to be the endpoint of a
viewcell edge that is parallel to the mesh object silhouette

US 9,171,396 B2

61

edge, then the pivot will encounter two viewcell vertices
forming the same angle. In this case, the supporting polygon
is a quadrangle formed by the viewcell edge and the mesh
object silhouette edge (i.e., an SE-ME supporting polygon).
All of the supporting polygons which contain an edge of the
mesh object and a vertex of the viewcell are formed by piv-
oting to the supporting viewcell element.

If adjacent mesh object silhouette edges produce support-
ing polygons which pivot to the same viewcell vertex then the
supporting polygons intersect at the common edge formed by
this vertex and the shared mesh object silhouette vertex. In
this case, the supporting hull at the mesh object silhouette
vertex is completely defined by these two supporting poly-
gons. Adjacent mesh object silhouette edges may also pro-
duce supporting polygons which pivot to different vertices of
the viewcell. In this case the two supporting polygons do not
form a continuous surface at the mesh silhouette vertex. To
close the supporting hull surface at this vertex, one or more
supporting polygons are constructed between the mesh sil-
houette vertex and specific edges of the viewcell. This con-
struction proceeds by the previously described “sweep”
operation: sweeping along the chain of viewcell silhouette
edges between each of the viewcell silhouette vertices to
which the adjacent mesh silhouette edges has pivoted. During
this sweep, a supporting polygon is formed from each of these
viewcell silhouette edges and the mesh silhouette vertex. This
construction can be seen as a “sweep” of the viewcell silhou-
ette edge chain such that a swept polygon is generated for
each viewcell silhouette edge. In general, the sweep between
two viewcell vertices can take more than one path, but only
one path will sweep out a set of polygons which connect the
two original supporting polygons to form a continuous sur-
face with a consistent face orientation. This path is the sup-
porting viewcell silhouette contour (SVSC).

This algorithm produces a continuous polygonal surface
which envelopes or supports both the mesh object and the
viewcell. In some embodiments, if both the viewcell and the
mesh object are convex the supporting polygons constructed
by this algorithm intersect only at their edges and form the
convex hull of the viewcell and the mesh object.

If the viewcell is non-convex, then the from-point silhou-
ette contour of the viewcell, as seen from an inside corner
vertex of a manifold mesh first-order silhouette, may be a
complex contour containing cusps and t-vertices. If the mesh
object is also non-convex then the supporting polygons may
intersect in their interiors.

However, if the viewcell is restricted to be a convex poly-
hedron, then the from-point silhouette contour of the viewcell
(viewed from an inside corner mesh silhouette vertex) is
always a simple contour, without cusps or t-vertices. Conse-
quently, when the viewcell is convex, the sweep operation on
the viewcell contour is substantially simplified. According to
some embodiments, the sweep operation is substantially sim-
plified by restricting the viewcells to be convex polyhedra.

A first-order wedge incident on a first-order mesh silhou-
ette edge is the extension of the corresponding supporting
polygon which is formed between the same mesh silhouette
edge and a supporting viewcell vertex (SVV). This type of
wedge is constructed from the mesh silhouette edge (i.e., a
line segment) and the two extended lines of the supporting
polygon that intersect the mesh silhouette edge. Conse-
quently, the wedge, as initially constructed, tends to extend
semi-infinitely away from the viewcell, until it intersects a
mesh polygon. This type of wedge is formed from the exten-
sion of a SV-ME supporting polygon and is called a from a
SV-ME wedge.

25

30

35

40

45

62

A first-order wedge incident on a first-order mesh object
silhouette inside corner vertex is the extension of the swept
triangle (i.e., the SE-MV supporting polygon formed
between the mesh silhouette vertex and an edge of the view-
cell silhouette contour). This type of wedge is constructed
from the mesh silhouette vertex and the two lines of the
supporting polygon that intersect this vertex. These two lines
are extended semi-infinitely away from the viewcell to form
boundaries of the SE-MV wedge. Consequently, the wedge
tends to extend semi-infinitely away from the viewcell, until
it intersects a mesh polygon. Since this type of wedge is
formed from a source (i.e., viewcell) edge and a mesh vertex,
it is called a SE-MV wedge.

SE-MV supporting polygons that are incident on an out-
side corner vertex of a mesh silhouette contour are actual
bounding polygons of the supporting hull between a convex
viewcell and the mesh silhouette. However the extension of
such supporting polygons would produce a SE-MV wedges
that intersects the first-order umbral event surface tangen-
tially, only at the point of the outside corner silhouette vertex.
Consequently such wedges would not contribute to the first-
order umbral event surface/volume and need not be con-
structed.

A special case occurs in which the first-order mesh silhou-
ette edge pivots to (i.e., is supported by) a SVV which is a
vertex of a viewcell edge that is parallel to the mesh silhouette
edge. In this case the supporting polygon between the mesh
silhouette edge and the viewcell edge is quadrangular. Such a
supporting polygon and its corresponding umbral event
wedge are called SE-ME supporting polygons, wedges.
Embodiments include a method of explicitly identifying SE-
ME wedges. Identitying SE-ME wedges is useful because
unlike the other types of wedges, finding on-wedge visible
intersections for SE-ME wedges is itselfa from-region (from-
segment) visibility problem. The SE-ME on-wedge visibility
solution is somewhat more complex than the from-point,
on-wedge visibility solutions used for SV-ME and SE-ME
wedges.

The preceding description of the supporting hull between a
mesh object, and a viewcell assumed that the supported first-
order silhouette contours of the mesh object are simple con-
tours in which each contour is a polyline. In fact, any first-
order from-region silhouette contour may actually be a
compound contour, in which the entire contour is formed by
intersecting contours. The contours intersect where a wedge
from one contour intersects another contour (i.e., first-order
silhouette edge). This intersection occurs at a compound sil-
houette vertex (CSV). When higher-order interaction of edge
triples is considered, these CSVs in general correspond to
quadric surfaces. The present method of pivot-and-sweep
construction based on the first-order visibility model effec-
tively treats the CSVs as simple inside corner silhouette ver-
tices; constructing one or more SE-MV's on each CSV, creat-
ing a continuous polygonal umbral event surface which
conservatively approximates the exact quadric surfaces sup-
ported by the first-order silhouette edges.

By using both SV-ME (and SE-ME in the special case) and
SE-MV supporting polygons/umbral wedges, embodiments
including the present method provide a more precise approxi-
mation to the actual from-viewcell umbral event surfaces than
the linearized antipenumbra method of Teller, which com-
putes a convex hull of SV-ME planes, which thereby signifi-
cantly underestimates the occlusion.

Unlike the linearized antipenumbra methods, the pivot and
sweep method is not limited to the more restricted problem of
visibility through a portal sequence.

US 9,171,396 B2

63

In some embodiments, to construct a from-region umbral
discontinuity mesh or from-region visibility map, the visible
intersections of the first-order wedges and the mesh polygons
are be determined. The visible intersection of mesh triangles
with a wedge are polylines on the wedge. The identification of
the visible intersections of a wedge with mesh triangles is
called the “on-wedge” visibility problem. Embodiments
include a method of 1-manifold (polyline) traversal in 2D
(i.e., on the wedge) in which the construction of visibility
event lines (i.e., 1-degree of freedom event surfaces) is inter-
leaved with 1-manifold traversal and interference checks to
produce an output-sensitive solution to on-wedge visibility.

This manifold traversal method is extended to a method of
traversing 2-manifolds (i.e., the triangle meshes) in 3D to
construct from-viewcell visibility maps that include the mesh
polygon fragments that are visible from the viewcell. The
PVS is derived from the visibility map. This 3D mesh tra-
versal method calls the aforementioned 2D (1-manifold)
mesh traversal process to solve on-wedge visibility.

The volume of space occluded by a mesh object from a
viewcell, assuming the first-order model of visibility propa-
gation, is called the first-order polyhedral umbra volume.
Since individual umbral volumes may intersect to aggregate
the occlusion, these volumes are referred to as the first-order
polyhedral aggregate umbra (PAU).

First-order PAU, also referred to as PAU, are bounded by
polygons called umbra boundary polygons or UBP. These
polygons are formed by the intersection of the first-order
wedges with triangle mesh polygons and with other first-
order wedges. The PAU are also bounded by the first-order
visible mesh polygon fragments (i.e., the fragments compris-
ing the from-viewcell visibility map). Together the UBPs and
the visible mesh polygon fragment form continuous, though
notnecessarily closed, umbral surfaces that define the bound-
aries of the PAU.

As described in detail in conjunction with the 3D 2-mani-
fold traversal method (FIG. 20 and related figures), the con-
struction of the visibility map, according to some embodi-
ments involves a step in which it is determined if'a point on a
on-wedge visible polyline segment is actually within a PAU
volume, and therefore, occluded from the entire viewcell. The
method includes a modified point-in-polyhedron test which
can answer this query for first-order PAU without explicitly
constructing the PAU.

The on-wedge visibility method uses a 1-manifold polyline
traversal method in 2D (FIG. 15 and related figures) is a
simpler implementation of the 2-manifold traversal method
in 3D used to construct the from-viewcell visibility map.
Theory of Operation: Methods of Representing from-View-
cell Visibility

Embodiments accommodate three different representa-
tions of from-viewcell visibility. In Table II, features of these
three representations are presented and compared with the
prior-art method of representing from-region visibility using
the complete discontinuity mesh.

In one representation of conservative linearized from-
viewcell visibility, using Polyhedral Aggragate Umbrae
(PAU), the actual from-viewcell occluded volumes of space
are identified. These volumes are bounded by umbra bound-
ary polygons (UBPs) which are formed from the from-view-

25

35

40

45

55

64
cell-element umbral wedges. The wedges are effectively
intersected with the mesh polygons and with each other to
determine the UBPs. This representation is comparable to
shadow volume representations, although most shadow vol-
ume methods are from-point shadows.

In another representation of conservative linearized from-
viewcell visibility, the Conservative Linearized Umbral Dis-
continuity Mesh (CLUDM), the from-viewcell-element
umbral wedges are not intersected with each other, but only
with the mesh polygons, to form a conservative discontinuity
mesh in which the regions of the mesh correspond to com-
pletely visible regions, umbral regions or antumbral regions.
The antumbral regions are actually a type of penumbral
region from which the viewcell is partially visible. Additional
tests are utilized to differentiate between umbral and antum-
bral regions (e.g., to determine the from-viewcell PVS).

In a third representation of conservative linearized from-
viewcell visibility, according to some embodiments, the Con-
servative Linearized Umbral Discontinuity Visibility Map
(CLUVM), only completely visible regions and umbral
regions are represented. This is a particularly useful represen-
tation since, in this case, the PVS corresponds to the com-
pletely visible regions. The construction of the CLUVM pro-
ceeds by determining if each potential occlusion boundary,
formed by the visible intersection of the from-viewcell-ele-
ment (i.e., point or edge) umbral wedge, is actually a from-
viewcell umbral boundary. Details of this determination,
together with an output sensitive method of constructing a
CLUVM, are presented elsewhere in the specification.

These three representations of a conservative from-view-
cell visibility are compared with the prior-art method of com-
plete discontinuity meshing. In a complete discontinuity
mesh the vast majority of boundaries contain penumbral
regions, which are regions from which the viewcell is par-
tially visible. Generally, a much smaller number of regions
are actual umbral regions from which no part of the viewcell
is visible. Both the penumbral regions and the umbral regions
of the complete discontinuity mesh may be bounded by line
segments and/or quadratic curves. The use of only the linear
components, as proposed in the prior-art method of incom-
plete discontinuity meshing, results in discontinuous umbral
boundaries and therefore cannot be used to determine from-
region visibility.

For a number of reasons, disclosed elsewhere in this speci-
fication, the conservative linearized umbral event surfaces
(CLUES) are much less numerous than the exact event sur-
faces employed by the prior-art method of complete discon-
tinuity meshing. Consequently, the approximate complexity
of the arrangement of the CLUDM is much lower than the
complexity of the complete discontinuity mesh. In fact, using
an output-sensitive construction method of the present inven-
tion, the complexity (both construction and storage) is gen-
erally only determined by the number of visible silhouette
edges, as indicated by N,*, for the CLUVM in Table II.

Estimates of these complexities are given in Table I, and
discussed in detail elsewhere in the specification.

US 9,171,396 B2

65
TABLE I

66

Table Comparing Three Methods of Representing Conservative Linearized

From-Viewcell Visibility and Classic Discontinuity Meshing

Polyhedral Conservative Conservative

Aggregete Linearized Linearized Umbral Complete
Umbrae Umbral Visibility Discontinity Mesh Discontinuity
(PAU) Map (CLUVM) (CLUDM) Mesh
Event Umbral From-Viewcell- From-Viewcell- Umbral and
Surfaces Boundary Element Umbral Element Umbral Penumbral
Polygons Wedges Wedges (Polygonal) Wedges (Polygonal
(UBP) (Polygonal) and Quadric)
Region UBP Occlusion Occlusion & DM Boundaries
Boundaries (Polygons) Boundaries Antumbral (Polylines and
(Polylines) Boundaries Quadratics)
(Polylines)
Region PAU Occlusion Region Occlusion Regions & DM Regions
(Occluded (Polygons) Antumbral Regions (Polygonal and
Polyhedral (Polygons) Quadratic-
Regions) Bounded Planar
Regions)
Approximate N** N A N 8
Complexity (N,* (Using 3D Mesh (N,*
of Regions Using 3D Traversal) Using 3D Mesh
Mesh Traversal)
Traversal)

*assumes that number of first-order silhouette edges is O(number of edges)l/2

Theory of Operation: Higher-Order Conservative Linear
Umbral Event Surfaces by First-Order Backprojection

According to some embodiments, the first-order visibility
model assumes that for any supporting polygon between the
viewcell and the first-order manifold mesh silhouette, the
edge of the supporting polygon corresponding to the first-
order silhouette edge is completely visible (unoccluded) from
the vertex of the supporting polygon corresponding to the
supporting viewcell vertex (SVV). That is, for an SV-ME
wedge, the corresponding supporting triangle is assumed to
intersect no other polygons which would occlude any part of
the corresponding mesh silhouette edge when viewed from
the corresponding SVV. Likewise, for an SE-MV wedge, the
corresponding swept triangle is assumed to intersect no other
polygons which would occlude any part of the corresponding
viewcell vertex contour edge when viewed from the corre-
sponding inside corner mesh first-order silhouette vertex.

In actuality, the supporting polygon corresponding to a
wedge may be completely occluded, completely unoccluded,
or partially occluded. If the supporting polygon is completely
unoccluded, then the corresponding first-order wedge is the
exact visibility event boundary supported by the mesh edge or
vertex. If the supporting polygon is completely occluded,
then no part of the corresponding wedge is incident on the
exact visibility event boundary, but the entire wedge remains
aconservative approximation to this boundary. If the support-
ing polygon is partially occluded, then portions of the wedge
corresponding to unoccluded segments of the supporting
polygon are the exact visibility event boundary, while the
portions of the wedge corresponding to occluded segments of
the supporting polygon are conservative approximations to
the exact boundary.

The following section summarizes a method using back-
projection to adaptively refine first-order wedges to account
for higher-order visibility interactions that exist when sup-
porting polygons are completely or partially occluded. Back-
projection is the process of determining the portions of a
source (i.e., the viewcell) visible from a particular mesh ele-
ment (i.e., a first-order silhouette edge). According to some
embodiments, to compute the backprojection, the first-order
visibility model and methods are employed using silhouette
edges as lineal light sources.

35

40

45

50

55

60

65

The methods described thus far have employed a simplified
first-order model of visibility propagation which results in
linearized visibility event surfaces. These first-order surfaces
are bounded by first-order wedges, which are generated by
the pivot and sweep method.

These first-order wedges are of two types: SV-ME wedges
and SE-MV wedges. The SV-ME wedges, generated by piv-
oting from a mesh edge to a viewcell vertex, reflect a restric-
tion of visibility that results from the combination of contain-
ment of the viewpoint to a point on the viewcell, and the
occlusion at the silhouette edge of the mesh. The SE-MV
wedges, generated by sweeping from a point on the mesh
through an edge of the viewcell, reflect a restriction of vis-
ibility that results from the containment on an edge (i.e.,
boundary) of the viewcell. Under the first-order visibility
model SV-ME (i.e., SE-ME in the special case) and SE-MV
wedges are the only types of visibility event surfaces that arise
in polyhedral environments

Both types of first-order wedges can be constructed by
extending the corresponding supporting polygons between
the mesh and the viewcell. An important assumption of the
first order visibility model is that any first-order mesh silhou-
ette edge is either completely visible from the viewcell or
completely occluded. This is the same as saying that for any
first-order silhouette edge, the viewcell is assumed to be
either completely occluded from the edge or completely vis-
ible.

Likewise, the first-order model assumes that the supported
silhouette edge or vertex is either completely occluded or
completely unoccluded when viewed from the corresponding
supporting viewcell vertex or edge.

According to some embodiments, using the first-order
pivot and sweep method, for example, if a first-order silhou-
ette edge segment is not occluded, then the supporting tri-
angle between the segment and the corresponding SVV is
assumed to be completely unoccluded (i.e., not intersected by
any other mesh polygons). If, in fact, this supporting triangle
is completely unoccluded, then the first-order model is exact
and the corresponding SV-ME wedge is an exact component
of'the from-viewcell umbral event boundary supported by the
mesh silhouette edge. If, however, this supporting triangle is

US 9,171,396 B2

67

partly or completely occluded, then the first-order model is an
approximation and the actual visibility event surface incident
on the silhouette edge may be composed of intersecting quad-
ric and planar surfaces. Moreover, the first-order silhouette
edge (or segments of it) may not even support actual visibility
event surfaces. Instead, the actual visibility event surfaces
may actually arise from other edges, called higher-order sil-
houette edges, such that all or parts of a first-order silhouette
edge are actually inside the visibility event (i.e., umbra)
boundary and therefore occluded.

Embodiments include a method of identifying silhouette
edges and vertices for which the first-order assumption is
inexact by conducting a sweep of the corresponding support-
ing triangles to identify occluding elements which induce
higher-order visibility event surfaces. These higher-order vis-
ibility event surfaces are approximated by computing a back-
projection which identifies portions of the viewcell actually
visible from the silhouette edge or silhouette vertex. This
backprojection is itself a from-region visibility problem that
is solved using the first-order pivot and sweep method. Using
this method, conservative first-order wedges can be adap-
tively refined to approximate the corresponding exact higher-
order visibility event surfaces to within a desired error toler-
ance.

In some embodiments, the higher-order method is imple-
mented as a technique to test the exactness of first-order
visibility event surface and modity or “adjust” such surfaces
to more precisely approximate the relevant higher-order vis-
ibility surfaces. First-order visibility event surfaces are inci-
dent on first-order from-region silhouette edges. First-order
silhouette edges define a conservative silhouette contour of a
mesh. Exact higher-order visibility umbral event surfaces are
not necessarily incident on first-order silhouette edges and
may also arise on other mesh edges, called higher-order sil-
houette edges. Higher-order visibility event surfaces, which
are incident on these higher-order silhouette edges, may pro-
duce considerably more occlusion than the corresponding
event surface incident on the first-order silhouette edge. In
fact, typically the event surfaces emerging from higher-order
silhouette edges will actually bound an occlusion volume
which contains the corresponding first-order silhouette edge.

Embodiments include a method of approximating higher-
order visibility event surfaces by “adjusting” first-order vis-
ibility event surfaces in such a way that the adjusted event
surfaces remain incident on the first-order silhouette edges. A
later section introduces a method of identifying when con-
straining a higher-order visibility event surface to a first-order
silhouette edge significantly decreases the precision of the
calculated higher-order event surface. Further embodiments
include a method of identifying the specific higher-order
silhouette edges that support visibility event surfaces, which
more precisely approximates the exact visibility event sur-
face.

The following is a description of where and how higher
order-visibility event surfaces arise on polyhedral mesh
objects. This framework provides the basis of a novel method
of adaptively, progressively approximating these higher-or-
der surfaces using polyhedral surfaces.

To illustrate the concepts, we begin with the simpler case of
a linear light source instead of an area light source. Envision
a single linear light source comprising a line segment and a
single convex polyhedron. Because the polyhedron is convex,
there is no self occlusion or inside corners. Consequently, the
umbra of the polyhedron is exactly formed using the first-
order pivot and sweep algorithm previously described. In this
case, each first-order silhouette edge of the mesh supports a

10

20

25

40

45

68

single SV-ME wedge formed by pivoting to the correspond-
ing supporting source vertex (SVV) of the source, which in
this case is a line segment.

Now, imagine that for a particular first-order silhouette
edge of the mesh, the first-order assumption is violated such
that from this silhouette edge, the corresponding SVV on the
source line segment is not visible (i.e., completely occluded).
This occurs if the supporting triangle formed by the silhouette
mesh edge and the SVV is intersected by other polygons such
that no unobstructed sightlines exist betweenthe SVV and the
mesh silhouette edge. Occlusion of this shaft in this case
indicates that the first-order wedge is not the exact umbra
boundary for the mesh silhouette edge since the correspond-
ing SVV is not even visible from the silhouette edge.

A better approximation to the actual visibility event surface
incident on the mesh silhouette edge could be obtained by
identifying the point on the linear lightsource that is closest to
the supporting viewcell vertex for the edge (i.e., the “pivot to”
point) but which is actually visible from the mesh silhouette
edge. This point is called the visible supporting viewcell
vertex (VSVV) for the mesh silhouette edge. The VSVV is on
the surface of the viewcell (i.e., on the line segment repre-
senting the viewcell/lightsource). It is the point visible from
the mesh silhouette edge to which the SV-ME UBP would
pivot. The corresponding SV-ME wedge is an umbral visibil-
ity event surface formed by the linear light source and the
mesh silhouette edge.

This higher-order SV-ME wedge clearly produces a larger
umbra volume than the corresponding first-order SV-ME
wedge, since the VSVV provides a less extreme “look™ across
the mesh silhouette edge, and “behind” the mesh.

According to some embodiments, this visible supporting
viewcell vertex (VSVV) for mesh silhouette edge is com-
puted by treating the mesh silhouette edge itself as a linear
light source. In this approach, the pivot and sweep method is
used to construct a visibility map on the surface of the view-
cell using a specific mesh silhouette edge as a light source. In
the backprojection process, first-order silhouette edges are
identified on intervening mesh polygons between the mesh
silhouette edge and the viewcell. First-order wedges are con-
structed on these silhouette edges in the direction of the
viewcell. Theses event surfaces induce a visibility map on the
viewcell which partitions it into components that are visible
from the mesh silhouette edge and components that are not.
The vertex of the visible component of the viewcell to which
the SV-ME wedge incident on the original mesh silhouette
edge, now being used as a backprojection light source would
pivotis the VSVV corresponding to the mesh silhouette edge.

Assume that the linear light source is positioned so that it
looks “over the top” of the mesh object at the mesh silhouette
edge in question. Assume also that in this particular case the
visibility of the line segment light source from the mesh
silhouette edge is affected by a single intervening triangle
which occludes the supporting triangle (i.e., the 2D shaft
between the supporting viewcell vertex and the mesh silhou-
ette edge). Further, assume that a single edge of this interven-
ing triangle spans the entire tetrahedral shaft formed by the
line segment light source and the mesh silhouette edge in such
a way that the intervening triangle “hangs down” into the
tetrahedral shaft. Also, assume the light source edge, the edge
of the intervening triangle, and the mesh silhouette edge are
mutually skew. This single intervening edge affects the
mutual visibility of the other two edges at various points on
the source and silhouette edge.

The conjunction of the three skew edges in this way indi-
cates that the actual visibility event surface incident on the
mesh silhouette edge includes a quadric surface. This is a

US 9,171,396 B2

69

classic EEE event TELLER (1992). Nevertheless, the back-
projection pivot and sweep algorithm applied in this case will
still identify a single conservative VSVV on the light source.
Pivoting from the mesh silhouette edge to this VSVV defines
a single SV-ME wedge incident on the silhouette edge that
conservatively approximates the actual quadric surface inci-
dent on the silhouette edge. Moreover, the actual higher-order
(quadric) visibility event surfaces incident on the mesh sil-
houette edge can be more precisely approximated by subdi-
viding the mesh silhouette edge and computing a VSVV for
each of the subsegments. During this subdivision process,
adjacent silhouette segments may produce different VSVVs
during backprojection. The corresponding SV-ME wedges do
not share a common edge but are connected by a SE-MV
wedges formed by sweeping from the vertex of the adjacent
silhouette segments through the linear light source from one
VSVV to the other VSVV. In this way, a quadric visibility
event surface is conservatively approximated by an alternat-
ing sequence of SV-ME and SE-MV wedges.

In some cases the pivot-and-sweep process using a mesh
silhouette edge as a lightsource will not produce a single
VSVV on the viewcell. For example, if an inside corner of a
silhouette contour is encountered during the backprojection,
either in single continuous contour or as a CSV, then the
resulting visible “extremal” feature on the viewcell may not
be a point but a line segment parallel to the mesh silhouette
edge as lightsource. This occurs when a backprojection SE-
MYV wedge is generated by a sweep anchored at the inside
corner through the mesh silhouette edge (as lightsource). The
resulting SE-MYV sedge is parallel to the mesh silhouette edge
(as lightsource). This wedge intersects the viewcell such that
the intersection is a supporting feature (i.e., both endpoints of
the wedge intersection are VSV Vs). This case is analogous to
the previously described case in the simple forward first-order
pivot-and-sweep in which a pivot operation results in a sup-
porting viewcell edge (SE-ME wedge) (e.g., the first-order
silhouette edge is parallel to an extremal edge of the view-
cell). This higher-order forward SE-ME wedge construction
is managed similarly in both cases.

The details of higher-order visibility event surface con-
struction using the backprojection process for the general
case of a polyhedral light source are disclosed in the detailed
description portion of the specification. In general, the back-
projection applies the first-order pivot and sweep method
using the mesh silhouette edges or subsegments of these
edges as linear light sources to identify VSVVs. These
VSV Vs are in general connected by visible supporting view-
cell contours VSVSCs. Intervening SE-MV higher order
wedges are constructed by sweep process on the VSVSCS.
Further embodiments include methods to construct higher
order SE-MV wedges in the cases where the VSVSCs corre-
sponding to adjacent silhouette edges are disconnected).

According to some embodiments, this backprojection
method is used to compute a single higher-order SV-ME
wedge for a mesh first-order silhouette edge that conserva-
tively approximates a very complex visibility event surface
incident on the mesh silhouette edge, which may include the
intersection of multiple quadric and planar surfaces. In such
cases, a mesh silhouette edge may be subdivided, and the
backprojection applied to subsegments to more accurately
approximate an actual event surface that is varying substan-
tially across a single edge. This subdivision can be performed
adaptively based on simple tests, which indicate the maxi-
mum possible deviation of the linearized event surface from
the actual visibility event surface along a particular segment.
This method requires less computation than methods such as
Teller (1992) and Nirenstein (2005) that first compute the

10

15

20

25

30

35

40

45

50

55

60

65

70

entire set of event surfaces incident on a silhouette edge and
then determines which ones are the actual umbra boundary
surfaces by using some type of containment test or higher
dimensional CSG.

As previously encountered for the first-order visibility map
construction, in some cases the SV-ME wedges for adjacent
silhouette edges or segments are disjoint and must be con-
nected by SE-MV wedges generated by sweeping from the
shared vertex of the edges through the boundary silhouette
contour of the viewcell such that the sweep connects the two
VSV Vs for the connected mesh silhouette edges.

In the first-order case, the two SVVs corresponding to
adjacent silhouette edges always lie on the actual boundary of
the viewcell and are connected by a single boundary silhou-
ette contour of the viewcell. In the higher-order backprojec-
tion case, the two VSVVs may or may not lie on the same
contour. If the two portions of the viewcell visible from the
adjacent edges are disjoint, then the VSV Vs are not connected
by a single contour. In this case, the convex hull of the two
contours can be used to conservatively connect the two
higher-order wedges and the higher-order SE-MV wedges
can be conservatively generated from this connected contour.

According to some embodiments, the backprojection
method is applied to a mesh silhouette edge only if the cor-
responding supporting viewcell vertex (SVV) is occluded
from the mesh silhouette edge, as indicated by an occlusion of
the 2D shaft between these two structures. This occlusion of
the 2D shaft for SV-ME wedges is a from point visibility
problem that can be computed using the previously described
2D version of the mesh traversal algorithm. Any segments of
the silhouette edge for which the EVV is visible do not require
application of the backprojection method since, for these
segments, the first-order wedge is the exact visibility event
surface.

Further, according to some embodiments, subdivision and
recursive backprojection for a silhouette segment from which
the SVV or VSVV is occluded is guided by a simple test that
measures the maximum possible deviation between the cur-
rently computed wedge and the actual visibility event surface
incident on the segment. This test is performed by pivoting
from the silhouette segment to the viewcell in the opposite
direction normally used to find the SVV. Pivoting in this
direction identifies a separating plane between the silhouette
edge and the viewcell. This separating plane corresponds to
the maximal possible extent of a higher-order visibility sur-
face incident on the silhouette edge segment. It also corre-
sponds to the extremal penumbra boundary between the seg-
ment and the viewcell. In some embodiments, a higher-order
occlusion surface would only approach this plane when
nearly the entire viewcell is occluded from the corresponding
silhouette segment. The angle between this penumbra plane
and the current conservative SV-ME wedge for the segment
indicates the maximum possible deviation of the current con-
servative event surface from the actual event surface at this
silhouette edge. These two planes, intersecting at the silhou-
ette edge in question, form a wedge supported over the length
of the segment. The volume of this wedge reflects the maxi-
mum possible deviation of the current conservative occluded
volume from the actual occluded volume over the silhouette
edge.

It should be noted that this deviation decreases as a func-
tion of distance from the viewcell. This reflects the fact that,
at greater distances, from-region visibility event surfaces
approach from-point visibility event surfaces. Consequently,
higher-order visibility effects are less important at greater
distances from the viewcell. In some embodiments, silhouette
edges are adaptively subdivided depending on the visibility of

US 9,171,396 B2

71

the corresponding SVV and the value of this umbra/penum-
bra metric. Using this approach, according to some embodi-
ments, higher-order visibility event surfaces are generated
only where they significantly enlarge the occluded volume
compared to the simpler first-order event boundaries.

The preceding discussion assumed that the backprojection
process is used to refine the wedges that are incident on a
first-order silhouette edge of the mesh. In fact, applying the
backprojection process to first-order silhouette edges can pro-
duce SV-ME wedges which violate local visibility when the
triangle formed by the corresponding VSVV and the silhou-
ette edge lies on the backfacing side of both triangles that
share the silhouette edge. In some embodiments, such a SV-
ME wedge is still a conservative representation of the actual
visibility event surface incident on the first-order mesh sil-
houette edge. However, such a violation of local visibility
indicates that the corresponding first-order mesh silhouette
edge is not actually a from-viewcell silhouette edge. Instead it
is on the occluded side of another visibility event surface that
arises from the actual from-viewcell silhouette edge, which is
closer to the viewcell than the first-order silhouette edge. This
type of from viewcell silhouette edge is called a higher-order
mesh silhouette edge.

A general from-region silhouette edge may or may not
support a higher-order visibility event surface. As defined by
Drettakis (1994) and Nierenstein (2005) a general from
region silhouette edge is any mesh edge that is a from-point
silhouette edge for any point on the viewcell. This generally
includes many more edges of mesh polygons than first-order
silhouette edges.

General from-region mesh silhouette edges may or may
not give rise to from-viewcell umbral visibility event sur-
faces, depending upon the exact arrangement of intervening
geometry between the general from-region silhouette edge
and the viewcell. General from-region mesh silhouette edges
can be identified using criteria that are slightly different for
identifying first-order mesh silhouette edges. According to
some embodiments, an edge is a general from-viewcell sil-
houette edge if it meets three criteria: 1) it must have at least
one component triangle that is frontfacing for at least one
vertex of the viewcell, 2) it must have at least one component
triangle that is backfacing for at least one vertex of the view-
cell, and 3) the component triangles must be mutually back-
facing.

The previously described 3D mesh traversal algorithm may
be modified to include umbral event surfaces that are incident
on non-first-order, general from-viewcell silhouette edges. In
one modification, the 3D mesh traversal initially proceeds in
the usual way: each mesh edge is examined to determine if it
is a first-order silhouette edge. Backprojection is performed,
using the first-order mesh silhouette edge as a lineal light
source, to compute the higher-order wedges incident on the
first-order mesh silhouette edge by identifying the VVS and
VSVSC on the viewcell surface. If the corresponding higher
order SV-ME wedge violates local visibility, then a closer,
general from-viewcell silhouette contour is identified by tra-
versing the mesh away from the first-order edge until one or
more general from-viewcell silhouette edges are encountered
which comprise a silhouette contour that support a higher-
order visibility event surface (i.e., by backprojection) that
occludes the original first-order mesh silhouette edges. This
retraction can be repeated where the higher-order wedges also
violate local visibility. This modification begins with a con-
servative result and refines it to a desired precision based on
measurements of the maximum deviation of the current event
surface from the actual event surface.

10

15

20

25

30

35

40

45

50

55

60

65

72

The linearized backprojection method of the present inven-
tion provides a more precise approximation of higher-order
visibility event surfaces than the linearized antipenumbra
method of Teller (1992). Teller’s antipenumbra method uses
a pivoting strategy from a portal edge to a source portal which
effectively identifies a VSVV on the source portal corre-
sponding to the target portal edge. This point, together with
the source portal edge, is used to define a plane which bounds
the antipenumbra volume.

These planes correspond to the planes of SV-ME wedges/
UBPs defined by the present embodiments. As previously
indicated for the case of first-order visibility (e.g., between
two portal sequences), Teller uses only SV-ME planes to
approximate the visibility boundary, whereas the present
invention uses both SV-ME and SE-MV polygons (e.g., the
UBPs). The present embodiments’ use of these polygonal
wedges always produces a more precise approximation to the
actual visibility event boundary than Teller’s antipenumbra,
which is based on intersecting planes. Moreover, the present
method defines a systematic approach to linearized back-
projection including mesh traversal, silhouette edge identifi-
cation, and adaptive subdivision, which can be applied to the
general from-region visibility problem. In contrast, Teller’s
antipenumbra method depends on a simple pivoting strategy
that can only be applied the more limited problem of visibility
through a portal sequence.

Referring to FIG. 57 of PCT/US2011/051403, the figure
illustrates an exemplary diagram showing the relationships,
in one embodiment, between a visibility event encoder, a
visibility event server, and a visibility event client.

In some embodiments, a game database or other modeled
environment, shown as data 5710, comprising geometry, tex-
ture and other information; is processed using conservative
linearized umbral event surfaces to produce delta-PVS data
stored as Visibility Event Data (5730). This processing is
shown in FIG. 57 as being performed by a Visibility Event
Encoder, 5720. In one embodiment, this processing/encoding
is performed off-line to generate the Visibility Event Data
5730, which is stored for later use. In some embodiments, the
visibility event encoder 5720 includes the processor 5600 and
performs the processes illustrated in FIGS. 1, 3, 4A, 4C,
5A-5C, 6A, and 6B. In further embodiments, the Visibility
Event Encoder employs the 3D mesh traversal process of
FIG. 20A and related figures to generate the Visibility Event
Data 5730.

In some embodiments, the Visibilty Event Data 5730 is
delivered at runtime by a server unit labeled SERVER. In
some embodiments, the server unit includes stored visibility
event data 5730, previously generated by the visibility event
encoder. The server unit may also implement a Visibility
Event Decoder-Server process 5740. In some embodiments,
this Visibility Event Server process may implement server
elements of navigation-based prefetch to deliver the Visibility
Event Data to a client unit, labeled CLIENT, through a net-
work interconnect labeled 5790. In some embodiments, the
Visibilty Event Server may implement perception-based
packet control methods discussed in conjunction with FIG.
48A, FIG. 49, FIG. 50A, FI1G. 50B, and FIG. 51.

In some embodiments Visibility Event Server 5740 is inter-
faced to a Game Engine-Server process 5750. A Game
Engine-Server process is often used in existing multiplayer
games, for example to receive the location of players in a
multiplayer game and to deliver this data to client units. In
contrast, the Visibility Event Server 5740 progressively deliv-
ers the geometry, texture and other information that com-
prises the modeled environment, as visibility event data

US 9,171,396 B2

73

which is, in some embodiments, prefetched based on a user’s
movements within the modeled environment.

Visibility Event Data 5730 is delivered to a client unit
labeled CLIENT which in some embodiments includes a
Visibility Event Decoder-Client process 5780. The Visibility
Event Client process 5780 receives Visibility Event Data
5730. Process 5780 processes the Visibility Event Data into
PVS information that can be rendered. In some embodiments
this rendering is performed by a Game Engine Client, labeled
5770.

In some embodiments the Decoder-Client process 5780
receives visibility event data that has been effectively com-
pressed by the method of identifying and labeling silhouette
contours and occlusion boundary regions having high effec-
tive dynamic occlusion. This effective compression in some
embodiments by the contour identification and labeling pro-
cess described in conjunction with the exemplary flowchart of
FIG. 33A, FIG. 33B, FIG. 33C, and FIG. 33D.

In such embodiments the Decoder-Client process 5780 can
use the labeled contour information provided included in the
delivered visibility event data to identify entire contours from
a limited number of labeled first-order silhouette edges (see
exemplary flowchart of FIG. 32A and FIG. 32B). Embodi-
ments of the Decoder-Client process may also generate entire
occlusion boundaries at runtime from labeled silhouette con-
tour data (see FIG. 34 A and FIG. 34B as well as FIG. 35A and
FIG. 35B).

Using this contour data generated from the labeled edge
information, the Decoder-Client process 5780, in some
embodiments, generates a PVS (e.g. one or more child PVSs
from parent PVS data), or delta-PVS information at runtime
by traversing to the contours from a labeled seed triangle for
each connected component of the PVS or delta-PVS being
generated (see exemplary flowcharts of FIG. 36 and FIG.
37A).

The Decoder-Client process 5780, in some embodiments,
interfaces with Game Engine Client (5770). In some embodi-
ments the PVS or delta-PVS data delivered to the Decoder-
Client process or generated in the aforementioned decom-
pression sub-processes of the Decoder-Client process, is
submitted to rendering, depending on a the location of a
user’s or other agent’s viewpoint location. This rendering
may employ standard graphics API such as Microsoft
DirectX or OpenGL-ES employed by Sony Corporation’s
Playstation 3. In some embodiments, these graphics APIs
typically interface to graphics hardware through drivers.

In some embodiments, the Decoder-Client process also
acquires information indicating a user’s or autonomous
agent’s location in the modeled environment. This viewpoint
location information is transmitted, in some embodiments, to
the Decoder-Server process using the bidirectional commu-
nication interconnect 5790.

FIG. 2 Detailed Description: Identification of First-Order
Silhouette Edges and Construction of First-Order Conserva-
tive Linearized Umbral Event Surfaces

As previously described, two prior-art methods make
extensive use of from-region visibility event surfaces:
shadow volume algorithms for area light sources, and discon-
tinuity meshing algorithms.

In shadow volume methods, the visibility event surfaces
being constructed include umbral and penumbral event sur-
faces that intersect to form the boundaries of the correspond-
ing shadow volume. In simple cases, the umbral event sur-
faces are polygons (herein called umbra boundary polygons
or UBPs) and form the boundary of the umbral volumes
which are polyhedra.

10

15

20

25

30

35

40

45

50

55

60

65

74

Discontinuity meshing methods also employ visibility
event surfaces that are both umbral and penumbral. In discon-
tinuity meshing methods, the visibility event surfaces, called
wedges, are not intersected with each other. Consequently,
discontinuity mesh methods do not, for example, produce an
explicit umbral volume. Instead, in discontinuity meshing
methods, the wedges are only intersected with mesh poly-
gons. Following the wedge-polygon intersection step, a 2D
visibility process is applied on each wedge to determine vis-
ible portions of the intersected polygon segments. These vis-
ible segments of the intersected mesh polygons form the
discontinuity boundaries of the mesh. The discontinuity
boundaries define regions of uniform qualitative visibility
(e.g., umbra, antipenumbra, etc.) on the polygon mesh that
can be determined after the discontinuity mesh has been
constructed.

According to some embodiments, the present method of
conservative from-region visibility determination employs
conservative linearized umbral visibility event surfaces
which are constructed using a novel method of visibility event
surface construction.

In one embodiment of the present method, these conserva-
tive, linearized, umbral event surfaces are intersected with
each other and with mesh polygons to form UBPs that are
analogous to the event surfaces used in shadow volume meth-
ods.

In another embodiment of the present method, these con-
servative, linearized, umbral event surfaces are effectively
intersected with mesh polygons to form wedges that are
analogous to the event surfaces used in discontinuity meshing
methods. In a variation of this method, a conservative, linear-
ized, from-region visibility map (VM) is constructed from
these wedges.

The following is an overview of the first-order model of
visibility propagation which applies to both types of first-
order visibility event surfaces: wedges and UBPs (which can
be constructed by wedge-wedge intersection).

As is evident from the analysis of the prior art, the exact
visibility event surfaces that define from-region visibility in
polyhedral environments are often quadric surfaces. These
higher-order surfaces present significant computational chal-
lenges which have made the development of robust, practical,
from-region visibility precomputation methods very difficult.

Embodiments include a method of from-region visibility
precomputation that is based on a simplified model of from-
region visibility propagation in polyhedral environments. We
call this the first-order model. According to some embodi-
ments, this model produces visibility event surfaces that are
always planar, always conservative, and frequently exact.
Tests are used to determine if the first-order surface is exact
and to measure the maximum deviation of the first-order
surface from the exact result. A higher-order method can be
used to refine the first-order event surface in regions where the
first-order method is imprecise. In some embodiments, the
higher-order method is an implementation of the first-order
method in the reverse direction: computing the portion of the
viewcell visible from an edge.

Unlike the planar visibility event surfaces used in the dis-
continuity meshing methods (Heckbert et. al. 1992), the con-
servative, first-order, from-region visibility event surfaces
employed by the present method are guaranteed to form con-
tinuous umbral surfaces. These continuous umbral surfaces
produce continuous discontinuity mesh boundaries that par-
tition the discontinuity mesh into regions visible from the
viewcell and regions occluded from the viewcell. Conse-
quently, these regions form a conservative, linearized umbral
discontinuity mesh. Methods of constructing a conservative

US 9,171,396 B2

75

linearized umbral from-viewcell visibility map are disclosed.
Methods for deriving a conservative from-region PVS from
the corresponding from-region visibility map are also speci-
fied.

According to some embodiments, it is assumed that a poly-
gon mesh is a closed manifold triangle mesh (i.e., a set of
triangles that are connected by their common edges or cor-
ners) with each edge having exactly two component poly-
gons. Additionally, it is assumed that the view region is a
convex viewcell. In some embodiments, these assumptions
are not required by the method of first-order visibility deter-
mination, but they do enhance the simplification of the imple-
mentations. For example, the polygon mesh may be manifold
but not closed. In this case, each edge has either one or two
component triangles.

According to some embodiments, the first-order from-re-
gion visibility model is based on the simplifying, conserva-
tive assumption that if any element of a polygon mesh is
visible from any part of a view region (herein called a view-
cell) then it is visible from all parts of the viewcell. This
assumption leads to a definition of a first-order from-region
silhouette edge.

An edge of a polygon mesh is a first-order from-region
silhouette edge if one component polygon sharing the edge is
front facing (visible) to any vertex of the region and the other
component polygon is backfacing (invisible) to all vertices of
the view region. The definition of a first-order silhouette edge
further requires that the component polygons are not facing
each other.

This is a more restrictive definition than the definition of a
general from-region silhouette edge (e.g., used by Dretakis et
al, and Nirenstein 2005). An edge is a general from-region
silhouette edge if one component polygon is front facing and
the other component polygon is backfacing for any vertex of
the view region. Stated differently, an edge is a general from-
region silhouette edge if the edge is a from-point silhouette
edge for any point in the view region.

The following table compares first-order from-region sil-
houette edges to general from-region silhouette edges and
from-point silhouette edges.

TABLE III

Silhouette Edge Definition Table

Silhouette Definition =~ Backfacing Polygon Front Facing Polygon

From-Point
General From-Region

Backfacing from point
Backfacing from

any point on

viewcell

Backfacing from

all points on viewcell

Front facing from point
Front facing from

any point on

viewcell

Front facing from at least
one point on viewcell

First-Order, From-
Region

(on supporting hull)
From-Region,
Extremal Penumbral
(on separating planes)

Backfacing from
any point on
viewcell.

Front facing from
all points on
viewcell

The definition of a first-order from-region silhouette edge
is similar to a from-point silhouette edge in that both of these
silhouette edges define a boundary between visibility and
complete invisibility from the respective “regions”, with a
viewpoint being a degenerate region. Clearly, if a component
polygon is backfacing for all vertices of a convex viewcell,
then it is invisible from that viewcell. The first-order silhou-
ette edge definition requires that the other component poly-
gon sharing the edge is visible from any point on the viewcell.

Clearly, on any polygon mesh, there may be many more
general from-region silhouette edges than first-order from-

15

30

40

45

50

55

60

65

76

region silhouette edges. Every first-order silhouette edge is a
general from-region silhouette edge but the converse is not
true.

From-region visibility is determined from a view region,
which in the present embodiments is a polyhedral viewcell.

From-region visibility event surfaces are incident on from-
region silhouette edges. These from-region visibility event
surfaces may be penumbral or umbral.

According to some embodiments, as defined here, a from-
region umbral visibility event surface (also called simply an
umbral surface) is an oriented surface having a from-region
occluded side and a from-region unoccluded side. Points on
the from-region occluded side of the umbral surface are
occluded from any and all points on (or in) the view-region.
Points on the from-region unoccluded side of the umbral
surface are unoccluded (i.e. visible) from any point on (or in)
the view region.

A from-region umbral visibility event surface may be exact
or it may be conservative.

In some embodiments, an exact from-region umbral event
surface is comprised of quadric and planar components and
may be incident on any of the general from-region silhouette
edges. In order to determine which of the general from-region
silhouette edges support exact umbral event surfaces, an exact
solution of the from-region visibility problem is solved. As
previously discussed, this is a difficult computational prob-
lem that typically requires solving in higher-dimensional
spaces.

In contrast, embodiments employ the first-order model of
visibility propagation defining a pivot-and-sweep method of
constructing conservative umbral event surfaces which are all
planar and which are incident only on first-order silhouette
edges.

In some embodiments, points on the occluded side of a
conservative umbral event surface are actually occluded from
the view region, whereas points on the unoccluded side of a
conservative umbral event surface may actually be unoc-
cluded or occluded. Consequently, using conservative umbral
event surfaces to determine from-region visibility, e.g., using
the method of conservative from-viewcell visibility mapping,
the geometry visible from a viewcell is never underestimated
but may be overestimated.

The planar visibility event surfaces (wedges) employed in
the prior-art method discontinuity meshing are exact, but they
do not, in general, form continuous visibility event surfaces.
This is because the exact visibility event surface is generally
comprised of both planar and quadric components. Conse-
quently, the planar visibility event surfaces of the prior-art
method of discontinuity meshing cannot be used to determine
umbral regions.

In contrast, the first-order visibility event surfaces con-
structed using the methods of the present embodiments are
exact or conservative but are guaranteed to form a continuous
umbral event surface that can be employed, for example in the
present method of from-region visibility mapping, to deter-
mine what geometry is inside umbral regions. From-region
penumbral event surfaces are oriented visibility event sur-
faces that are incident on general from-region silhouette
edges. On the unoccluded side of a penumbral event surface a
certain subregion or “aspect” of the source view region is
visible. Whereas on the occluded side of the same penumbral
event surface the same subregion of the view region is
occluded. The prior-art method of discontinuity meshing uses
penumbral event surfaces to determine the various compo-
nents of a penumbra cast by polygon mesh objects from an
area light source.

US 9,171,396 B2

77

According to some embodiments, only umbral event sur-
faces are employed to determine from-region visibility. In
one embodiment, all of these umbral event surfaces are inci-
dent on first-order silhouette edges. In an alternate embodi-
ment, the first-order umbral event surfaces may be adaptively
refined by a process of backprojection to more precisely
approximate the exact umbral visibility event surfaces. These
refined or “adjusted” visibility event surfaces are, like first-
order umbral event surfaces, planar; but they reflect the
“higher-order” visibility effects caused by partial occlusion
of the view region from the silhouette edge. These visibility
event surfaces are therefore called higher-order visibility
event surfaces. In this alternate embodiment, these higher-
order visibility event surfaces (umbral) may “retract” to non-
first-order, general from-region silhouette edges.

Table IV shows the types of visibility event surfaces inci-
dent on various types of silhouette edges and certain charac-
teristics of these visibility event surfaces.

TABLE IV

Visibility Event Surfaces Incident on Types of Silhouette Edges

Silhouette-

Edge Visibility Event Surfaces Event Surface

Type Supported Type

From-Point From-Point Umbral Planar, Exact

General From-Region Penumbral Planar: Exact, Not Guaranteed

Continuous

Quadric: Exact, Not
Guaranteed Continuous
First-Order: Planar, Exact or
Conservative, Guaranteed
Continuous

and
From-Region Umbral

From-Region

First-Order,
From-Region

First-Order, From-Region
Umbral
Conservative or Exact

These basic aspects of the first-order model of visibility
propagation are illustrated in FIG. 2A and FIG. 2B. Subse-
quent details are given in the Description—Embodiments
sections of the specification.

FIG. 2A is a diagram showing a viewcell and two simple
polygon meshes A and B.

FIG. 2A also shows two first-order, from-viewcell silhou-
ette edges: edge Al, and edge B1 (which is subdivided into
segments B10 and B1V).

The construction of conservative linearized umbral event
surfaces (CLUES) incident on these first-order silhouette
edges is now described. In the following discussion, the
umbral event surfaces constructed are similar to discontinuity
mesh wedges in the sense that they define visibility from a
single feature of a viewcell (generally a supporting viewcell
vertex or edge). In a subsequent section of this specification,
it is shown that these wedges can be used to construct a
conservative linearized from-viewcell visibility map (VM)
from which a PVS can be derived.

In some embodiments, first-order umbral boundary poly-
gons (UBPs), which define visibility from an entire viewcell,
are explicitly constructed by intersecting the corresponding
first-order wedges. The construction and use of UBPs is
shown as an alternate embodiment in a later part of this
specification.

Consequently, the first steps in the construction of first-
order wedges and first-order UBPs are identical, which is
illustrated with simpler first-order wedges in FIGS. 2A and
2B.

FIG. 2A illustrates a viewcell and mesh objects A and B. In
some embodiments, the viewcell is a 3D cube having eight
vertices. For example, the viewcell in FIG. 2A is a cube
having vertices V,-Vj. In further embodiments, the viewcell

10

15

20

25

30

35

40

45

50

55

60

65

78

is any desired convex polyhedron. An edge of mesh A is
labeled Al havingedges A, ,andA, . AnedgeofmeshBis
labeled as two segments: B10 and B1V. With respect to
first-order silhouette edge Al, segment B1V is visible from
supporting viewcell vertex SVV1, as B1V is on the unoc-
cluded side of the event surface WEDGE]1 that is formed
between edge Al and the corresponding supporting viewcell
vertex SVV1, which corresponds to viewcell V. In this
regard, B1V is on the unoccluded side of WEDGE 1 since a
backfacing plane incident on first order silhouette edge Al
pivots in a clockwise direction towards viewcell V to deter-
mine the corresponding supporting viewcell vertex. Accord-
ingly, in some embodiments, the direction which a backfac-
ing plane incident on a first order silhouette edge pivots
toward the viewcell vertex indicates the unoccluded side of an
event surface supported by the viewcell vertex. The opposite
direction which the backfacing plane pivots indicates the
occluded side of the event surface supported by the viewcell
vertex.

With respect to first-order silhouette edge Al, segment
B10 is occluded from supporting viewcell vertex SVV1, as
B10O is on the occluded side of the event surface WEDGE1
that is formed between edge Al and the corresponding sup-
porting viewcell vertex SVV1.

The first-order visibility event surface, labeled WEDGEL1,
lies in the supporting plane between edge A1 and the viewcell.
The supporting polygon SP1 between edge Al and the view-
cellis the triangle (labeled SP1) formed by the vertices A, and
A, of edge Al and the viewcell vertex labeled SVV1.

According to some embodiments, WEDGEI1, the first-or-
der visibility event surface incident on edge A1, is formed by
extending the two edges of the corresponding supporting
polygon (SP1) that are incident on the vertices A, jand A,
of'edge Al. This extension occurs semi-infinitely starting at
the vertices A; jandA, ;| ofAl,inadirection away from the
viewcell. The two extended rays are connected to the vertices
A, jand A, | of edge Al to form the semi-infinite umbral
visibility event surface labeled WEDGE1. Only a portion of
WEDGET1 is shown in FIG. 2A, as it actually extends semi-
infinitely away from the viewcell. In some embodiments, the
plane of an event surface is represented by a 3D planar equa-
tion such as ax+by+cz=0

Thus, in some embodiments, to form a (from-viewcell)
first-order visibility event surface incident on a first-order
silhouette edge and a viewcell vertex, the supporting polygon
between the silhouette edge and the viewcell is first con-
structed. This construction is analogous to a pivot operation
on the silhouette edge in the direction away from the back-
facing component polygon and toward the viewcell until a
supporting viewcell feature (edge or vertex) is encountered.
In some embodiments the, wedge is formed by extending the
non-silhouette edges of this supporting polygon away from
the viewcell.

As illustrated in FIG. 2A, event surface WEDGE1 inter-
sects edge B1, dividing B1 into the two segments B1V, which
is first-order visible from the viewcell feature (the viewcell
vertex SVV1) with respect to first-order silhouette edge Al,
and B10O, which is not first-order visible from SVV1 with
respect to first-order silhouette edge Al. Wedge 1 intersects
first-order silhouette edge B1 (comprised of segments B10
and B1V) at the point labeled CSV. This point is a compound
silhouette vertex.

For the purposes of illustration, assume now that the seg-
ment B1V is on the unoccluded side of all first-order visibility
event surfaces formed by the edges of mesh A and the features
of the VIEWCELL. In this case, B1V is outside (on the
unoccluded side) of the first-order polyhedral aggregate

US 9,171,396 B2

79

umbrae (PAU) formed by the intersection of the first-order
wedges with the mesh polygons and with each other. Under
these conditions segment B1V is first-order visible from the
viewcell.

It the segment B1V is first-order visible from the viewcell,
then under the conservative assumptions of the first-order
visibility model, segment B1V is assumed to be visible from
any part of the viewcell. Consequently, the first-order visibil-
ity event surface incident on the segment B1V is constructed,
by the previously described pivoting operation, which gener-
ates the supporting polygon (SP2), between the segment B1V
and the supporting viewcell vertex labeled SVV2. As illus-
trated in FIG. 2A, the supporting polygon SP2 is defined by
viewcell vertex V; (SVV2) the vertices of segment B1V. The
previously described method of extending the supporting
polygon is once again employed. The resulting first-order
visibility event surface incident on BV1 is labeled WEDGE2.

WEDGE]1 is an exact visibility event surface incident on
edge Al because in this case, the corresponding supporting
viewcell vertex SVV1 is actually visible from the supported
first-order silhouette edge Al.

WEDGE?2 is not an exact visibility event surface through
edge B1V because the conservative assumption of the first-
order visibility model is violated in a very specific way: the
corresponding supporting viewcell vertex SVV2 is not actu-
ally visible from the supported first-order silhouette edge
B1YV, it is occluded when viewed from this edge.

The exactness of any first-order visibility event surface
(e.g., wedge) incident on a silhouette edge can be determined
using a 2D visibility test which tests the visibility of the
supporting viewcell vertex from the silhouette edge. In some
embodiments, if the supporting viewell feature is a vertex,
then this is a from-point visibility test that is equivalent to
testing the visibility of the first-order silhouette edge from the
corresponding supporting viewcell vertex (SVV). According
to some embodiments, segments of the first-order silhouette
edge that are visible from the corresponding SVV support
exact visibility event surfaces, and segments of the first-order
silhouette edge that are occluded from the corresponding
SVV support inexact/conservative visibility event surfaces.

In the special case where the silhouette edge is parallel to a
supporting viewcell edge, a special from-edge visibility test is
required. This is presented in detail in a later part of the
specification.

Embodiments also include a method to increase the preci-
sion of inexact visibility event surfaces. In this method, for
each segment of a first-order silhouette edge supporting an
inexact wedge, a point on the surface of the viewcell is iden-
tified that is the visible supporting viewcell vertex (VSVV)
for the segment. The VSVV is actually visible from the cor-
responding silhouette edge segment and forms a supporting
polygon with the segment.

According to some embodiments, VSVV is determined by
backprojection: using the silhouette edge as a linear light
source and constructing the first-order, from-region (in this
case from-edge) visibility event surfaces cast by polygon
mesh objects from the linear light source back toward the
viewcell. The intersection of these first-order wedges with the
mesh polygons and with the viewcell comprise a from-sil-
houette-edge, on-viewcell visibility map. This visibility map
contains the components of the viewcell that are visible from
the silhouette edge. The VSVV is the supporting vertex of
these visible components.

A wedge constructed by pivoting from the inexact silhou-
ette edge segment to the corresponding VSVV is an adjusted
or “higher-order” visibility event surface. These higher-order
visibility event surfaces reflect the effect of partial occlusion

20

40

45

55

80

of the viewcell (source) from the silhouette edge, an effect
which is not accounted for by the simple, conservative first-
order model of visibility propagation.

FIG. 2B shows the results of a backprojection process in
which B1V is treated as a linear light source. A wedge labeled
WEDGE_BACK incident on vertices A, ,and A, , of edge
Al is constructed from segment B1V, treated as a linear light
source. Note that edge A1 is a first-order silhouette edge with
respect to the source region B1V. The area below
WEDGE_BACK, in this example, is the unoccluded side of
WEDGE_BACK, which indicates the portion of the viewcell
visible from B1V.

The supporting polygon between B1V and Al is a triangle
with edge Al and vertex VB of edge B1V. The corresponding
wedge, WEDGE_BACK intersects the viewcell, creating a
new visible contour of the viewcell which includes vertex
VSVV.

In some embodiments, the process of constructing back-
projected wedges such as WEDGE_BACK, employs the
methods of first-order silhouette edge identification and
pivot-and-sweep wedge construction as described in some
embodiments in this specification. When these methods are
applied using the viewcell as the view region, the resulting
first-order wedges extend away from the viewcell and inter-
sect polygon meshes, partitioning them into portions that are
first-order visible from the viewcell and portions which are
first-order occluded. In contrast, when these methods are
applied to backprojection, the corresponding wedges extend
away from the first-order silhouette edge (such as B1V),
which acts as a lineal view region, and intersect the viewcell,
partitioning the viewcell into portions that are first-order vis-
ible from the silhouette edge and portions which are first-
order occluded from the silhouette edge. This partitioning of
the viewcell defines a new visible viewcell boundary or con-
tour (also called the visible supporting viewcell silhouette
contour), which is conservatively visible from the first-order
silhouette edge used as the lineal view region. The vertices of
this contour are then tested to determine which is the support-
ing vertex (the visible supporting viewcell vertex) for the
higher-order wedge to be constructed on the first-order sil-
houette edge used as a lineal view region.

The “adjusted” or higher order wedge is constructed by
pivoting from BV1 to VSVV to form a supporting polygon
SP_HIGH that is a supporting vertex between the edge B1V
and the visible viewcell contour.

The non-silhouette edges of the higher-order supporting
polygon SP_HIGH are extended through the vertices of B1V,
as previously described, to form the higher-order wedge
WEDGE_HIGH.

Thus, in order to construct higher-order visibility event
surface on a from-viewcell, first-order silhouette edge, the
first-order method of visibility propagation is applied in the
reverse direction to determine the portion of the viewcell
visible from the silhouette edge.

As shown in the later parts of the specification, a first-order
silhouette edge supporting an inexact visibility event surface
can be adaptively subdivided based on error metrics. Higher-
order wedges can be constructed on the subdivided segments
guided by these error metrics such that the result is a piece-
wise planar approximation of the corresponding exact quad-
ric event surface. Further, the present method of first-order
visibility, so applied realizes a new method of constructing
quadric surfaces which insures that the constructed surface
conservatively underestimates occlusion even as it converges
on the exact result.

The preceding theoretical introduction to first-order vis-
ibility employed a single type of visibility event surface for

US 9,171,396 B2

81

the purposes of illustration. This type of visibility event sur-
face is formed between a source (viewcell) vertex and a
silhouette edge. This type of visibility event surface is called
a SV-ME wedge. Another type of visibility event surface is
used to construct a continuous from-region visibility event
surface incident on non-convex polygon meshes. This type of
visibility event surface is formed from a viewcell (source)
edge and a mesh vertex and is called a SE-MV wedge, which
is discussed in detail in other parts of this specification.

In conclusion, first-order wedges are constructed using the
simple first-order “pivot-to-viewcell” method from first-or-
der silhouette edges. First-order wedges can be intersected
with mesh polygons and other wedges form continuous from-
viewcell visibility maps or continuous first-order PAU. Both
of these data structures conservatively underestimate the
from-viewcell occlusion. Embodiments include implementa-
tions in which conservative, from-viewcell PVS is derived
from either first-order visibility maps or first-order PAU.

Higher-order visibility event surfaces can be constructed
by a backprojection process in which first-order visibility
methods are applied to determine portions of a viewcell vis-
ible from a silhouette edge.

The above detailed description introduces the first-order
visibility model of visibility propagation and a general over-
view of some methods for constructing first-order visibility
event surfaces. The details of first-order silhouette edge iden-
tification and first-order wedge construction are provided in
further detail in the specification.

FIG. 1-FIG. 6 Detailed Description: First Embodiment
Employing Conservative Linearized Umbral Event Surfaces
Constructed Using Pivot-and-Sweep Method.

One embodiment includes a method of conservative, lin-
earized visibility map construction that is based on a simpli-
fied first-order model of visibilty propagation in polyhedral
environments. As previously described in embodiments, the
first-order visibility model is based on the conservative
assumption that if a silhouette edge of a polygon mesh is
visible from any part of a viewcell, then it is visible from all
parts of the viewcell. According to embodiments of this
model, silhouette edges (called first-order silhouette edges)
are limited to those triangle mesh edges that have one com-
ponent polygon that is backfacing for all vertices of the view-
cell and another component polygon that is front facing for at
least one vertex of the viewcell. Additionally, to be a first-
order silhouette edge, the component polygons is backfacing
with respect to each other.

This model also leads to a method in which first-order
conservative linearized umbral event surfaces (called
CLUES, or also called first-order wedges or simply wedges)
are formed either by pivoting from the (first-order) silhouette
edge to a vertex of the viewcell (SV-ME wedge derived from
the pivoted supporting polygons) or by sweeping from an
(first-order) inside corner silhouette vertex through viewcell
silhouette edges (SE-MV wedges derived from swept sup-
porting triangles). The method also employs SE-ME wedges
generated in the special case where the supported silhouette
edge is parallel to a supporting viewcell edge. The first-order
embodiment always produces a conservative umbra bound-
ary, and in some cases, it is the exact umbra boundary.

Other embodiments are based on a higher-order model of
visibility propagation in polyhedral environments. This
model does not assume that if a silhouette edge is visible from
any part of a viewcell then it visible from all parts of the
viewcell. Rather, this model accounts for portions of the
viewcell that are occluded from a silhouette edge. The higher-
order model forms the basis of alternate embodiments which

10

20

40

45

55

60

82

can produce a more precise approximation to the exact umbra
boundaries in cases where the first-order method is imprecise.

The first-order embodiment of the method is described
first.

FIG. 1 Construction of First-Order Wedges

FIG. 1 shows a flowchart disclosing the general organiza-
tion of the construction of first-order wedges formed by a
polygon mesh object and a convex viewcell using the pivot
and sweep method. According to some embodiments, process
flow starts at step 110, where polygons of the polygon mesh
object are individually examined for first-order silhouette
edges. The method of identifying first-order silhouette edges
is disclosed in detail in FIG. 3. Embodiments disclosing the
order in which the polygons are examined is illustrated in
FIG. 20, thatillustrates an algorithm enforcing a strict front to
back order.

Process flow proceeds to step 112 to determine if the first-
order silhouette edge encountered in step 110 is parallel to the
supporting viewcell edge.

If, in decision step 112, it is determined that the first-order
silhouette edge is not parallel to the supporting viewcell ver-
tex, then process flow proceeds to step 114 to construct a
supporting polygon between the silhouette edge and the view-
cell. FIG. 4A illustrates the details of this construction.

Process flow proceeds to step 116 to construct the SV-ME
wedge incident on the first-order silhouette edge by extending
specific edges of the corresponding pivoted supporting poly-
gon incident on vertices of the first-order silhouette edge.
Additional details of step 120 are disclosed in FIG. 6A.

If the first-order silhouette edge is parallel to a supporting
silhouette then process flow proceeds from 112 to step 118.

In step 118, the supporting quadrangle, called a SE-ME
(source edge-mesh edge) quadrangle is constructed by pivot-
ing from the viewcell edge to the viewcell as previously
described.

Process flow proceeds to step 120 to construct the SE-ME
wedge corresponding to the SE-ME supporting quadrangle
by extending the line segments formed by diagonal vertices of
the SE-ME supporting quad. The edges of the SE-ME wedge
are comprised of the supported silhouette edge and the two
lines formed by extending the diagonal line segments through
the silhouette edge vertices and away from the viewcell.

Process flow proceeds for steps 116 or 120 to decision step
125 to determine if adjacent silhouette edges form an outside
corner of the first-order silhouette contour. In some embodi-
ments, this determination is made using a simple test for the
relative orientation of adjacent silhouette edges. Each edge,
being on the boundary of a polygon mesh, has a natural
orientation in which one normal to the edge is facing outside
the polyhedron (outfacing normal) and the opposite normal is
facing inside the polyhedron. If the two outfacing normals for
adjacent silhouette edges are facing away from each other,
then the shared silhouette vertex is an inside corner of the
silhouette contour. Otherwise the shared silhouette vertex
forms an outside corner.

In some embodiments the relative orientation of edges on a
mesh is used to determine which vertices of a mesh can
possibly be inside corner vertices. For example, vertices of
edges which are vertices of inside corner edges (reflex or
non-convex edges) may be inside corner vertices. In some
embodiments the determination of whether a vertex is an
inside corner vertex is ultimately made by examining the
relationship between the pivoted wedges incident on the
edges shared by the vertex. In some embodiments if the
pivoted wedges incident on adjacent mesh edges intersect
only at the shared vertex (and have no face to face intersection
orcommon edge), then the vertex is an inside corner vertex. In

US 9,171,396 B2

83

some embodiments if a non-shared vertex of one of the adja-
cent edges is on the non-occluded side of the pivoted wedge
incident on the other adjacent edge, then the vertex common
to the adjacent edges is an inside corner vertex.

If it is determined, in decision step 125, that the adjacent
silhouette edges form an outside corner of the silhouette
contour, then process flow proceeds to step 140 to intersect
the wedges incident on the adjacent silhouette edges with
each other. In some embodiments, if the adjacent SV-ME
wedges were generated by pivoting to the same supporting
viewcell vertex (SVV), then they exactly intersect at a com-
mon edge. Otherwise, the adjacent SV-ME wedges intersect
each other in their polygon interiors and an explicit polygon-
polygon intersection determination is made. In either case,
the intersecting SV-ME wedges produce continuous umbral
event surface spanning portion of the first-order silhouette
contour formed by the two supported silhouette edges. In
some embodiments, adjacent SV-ME wedges are not inter-
sected. In these embodiments the step 140 is optional. A
SV-ME wedge which is not intersected with an adjacent SV-
ME wedge can still be intersected with mesh polygons and the
resulting wedge-mesh polygon intersection tested to deter-
mine if it is a from-viewcell occlusion boundary. Additional
discussion of intersecting adjacent SV-ME wedges is given in
conjunction with FIG. 7D4 and FIG. 7D5.

If it is determined, in decision step 125, that the adjacent
silhouette edges do not form an outside corner of the silhou-
ette contour, then process flow proceeds from step 125 to step
130. This case corresponds to an inside corner of a first-order
silhouette contour.

In some embodiments, such inside corners formed by two
silhouette edges that are connected by a vertex are simple
silhouette vertices. Using the first-order model of visibility
propagation inside corners can also form on compound sil-
houette contours in which the component silhouette edges do
not share a vertex in the original manifold mesh. These are
called compound silhouette vertices (CSVs), they correspond
to from-region t-vertices of the manifolds and are discussed in
detail in a later part of this specification.

In step 130, one or more supporting swept triangles are
formed between the inside corner mesh silhouette vertex and
certain edges of the viewcell that are from-point silhouette
edges with respect to the inside corner mesh silhouette vertex.
Additional details of this process are disclosed in FIG. 5A and
FIG. 5B.

Process flow proceeds to step 135, the corresponding SE-
MYV wedges are generated from the swept triangles by extend-
ing the edges of the swept triangles through the inside corner
mesh silhouette vertex. Additional details of this process are
disclosed in FIG. 6B.

Alternate embodiments are possible in which the set of
first-order wedges are constructed using a different method.
For example, in one alternate embodiment, the entire conser-
vative supporting hull between the viewcell and the polygon
mesh objects may be constructed, and the first-order wedges
selected as a subset of the conservative supporting hull poly-
gons.

FIG. 3 shows details of the step 110 in FIG. 1, the identi-
fication of first-order silhouette edges. According to some
embodiments, the process illustrated in FIG. 3 is entered at
step 110 of FIG. 1. In some embodiments, the process of
identifying first-order silhouette edges starts at step 310 to
identify the component polygons of the edge. In some
embodiments, this process is facilitated by storing the poly-
gon mesh as a linked data structure such as a winged-edge
data structure, in which a reference to the component poly-
gons for each edge is stored. In other embodiments, any

25

30

40

45

50

55

84

desired data structure is used to represent the polygon mesh.
In one implementation, the polygon mesh is a closed mani-
fold mesh in which each edge is shared by exactly two com-
ponent polygons.

Process flow proceeds to decision step 315 to test one
component polygon, called polygon B or PB, to determine if
the component is backfacing for all vertices of the viewcell. In
this case, all vertices of the viewcell would be on the back-
facing side of the plane that contains the component polygon.

If, in decision step 315 it is determined that PB is not
backfacing for all viewcell vertices, then process flow pro-
ceeds from step 315 to step 320 to test the other component
polygon, called PA, as described in step 315.

If, in decision step 320, it is determined that PA is back-
facing for all vertices of the viewcell, then process flow pro-
ceeds to step 325 to determine if component triangle PB is
front facing for at least one viewcell vertex.

If, in decision step 325, it is determined that PB is front
facing for at least one viewcell vertex then process flow
proceeds to decision step 330 to test PA and PB to determine
if they are backfacing with respect to each other.

If, in decision step 330, it is determined that PA and PB are
backfacing relative to each other, then process flow proceeds
to step 335, where the edge being tested is a first-order sil-
houette edge.

If, in decision step 330, it is determined that PA and PB are
not backfacing relative to each other, then process flow pro-
ceeds to step 355 which returns a result that the edge being
tested is not a first-order silhouette edge.

If in step 315, if PB is backfacing for all vertices of the
viewcell, process flow proceeds to step 340 to determine if PA
is frontfacing for at least one viewcell vertex. If PA is front-
facing for at least one viewcell vertex, process flow proceeds
to step 345 to determine if PA and PB are backfacing to each
other as functionally described in step 330.

If PA and PB are backfacing with respect to each other,
process flow proceeds to step 350 which returns a result that
the edge being tested is a first-order silhouette edge. If PA and
PB are not backfacing to each other, process flow proceeds
from 345 to 355. If PA is not frontfacing for at least one
viewcell vertex, process flow proceeds from 340 to 355. If any
of the tests in steps 320, 325, 330, 340, or 345 fail, then the
mesh edge is not a first-order silhouette edge, as indicated in
step 355.

FIG. 4A Method of Constructing of SV-ME and SE-ME
Supporting Polygons

FIG. 4A is a flowchart showing the method of constructing
a SV-ME supporting polygon incident on a (first-order) mesh
silhouette edge. FIG. 4A gives additional detail of the process
shown in step 116. According to some embodiments, the
process illustrated in FIG. 4A is entered from step 116 in F1G.
1.

In some embodiments, the process of constructing support-
ing polygons starts at step 410 upon encountering a silhouette
edge of the polygon mesh. In the present embodiment this is
a first-order silhouette edge, although other embodiments
may potentially use higher order silhouette edges.

Process flow proceeds to step 415 to set a SUPPORTIN-
G_ANGLE between the first-order silhouette edge and the
viewcell to a MAX value (e.g., 180 degrees). According to
some embodiments, the supporting angle is defined as the
angle formed when pivoting a plane through the first-order
silhouette edge, starting in the plane of the backfacing com-
ponent polygon and pivoting toward the viewcell (in the gen-
eral direction of the normal of the backfacing component
polygon) until the first vertex or edge of the viewcell is
encountered. The position of the pivoting plane on contact

US 9,171,396 B2

85

with the viewcell is the plane of the supporting polygon
between the silhouette edge and the viewcell. The angle tra-
versed during the pivot is called the supporting angle or the
pivot angle, and it is measured between the supporting plane
and the plane of the backfacing component polygon of the
silhouette edge. The viewcell vertex, or edge if the supporting
polygonis SE-ME type, that results in the smallest pivot angle
is the supporting vertex or supporting edge.

The remainder of FIG. 4A shows the process of identifying
the supporting viewcell vertex and constructing the support-
ing polygon. Process flow proceeds to step 420 to set the
VERTEX to the first vertex of the viewcell. In embodiments,
the VERTEX is a candidate vertex that is tested to determine
if the candidate vertex is a supporting vertex. Process flow
proceeds to step 425 to construct a triangle between the mesh
silhouette edge EDGE and VERTEX. Process flow proceeds
to step 430 to measure the angle between the visible sides of
the plane of the TRIANGLE and the plane of the backfacing
component polygon of the silhouette edge using a standard
method for measuring the angle between planes at their line of
intersection. Process flow proceeds to step 435 to compare
this ANGLE to the current value of the SUPPORTING_A-
NGLE. If the ANGLE is less than the current value of the
SUPPORTING_ANGLE, then process flow proceeds to step
440 to set the SUPPORTING_ANGLE to ANGLE. Process
flow proceeds to 445 to set the SUPPORTING_VERTEX to
the current VERTEX.

Process flow proceeds to step 450, where the supporting
polygon is set to the triangle formed by the silhouette edge
and the supporting vertex.

Process flow proceeds to step 455 to determine if unproc-
essed viewcell vertices remain. If, in decision step 455, it is
determined that no unprocess viewcell vertices remain, then
process flow proceeds to step 460, where the supporting poly-
gon is output.

If, in decision step 455, it is determined that unprocessed
viewcell vertices remain, then process flow proceeds to step
475, where the next viewcell vertex is selected for processing.

If, in decision step 435, it is determined that the ANGLE
(pivot angle) measured is not less than the current SUPPORT-
ING_ANGLE, then process flow proceeds to step 465 to
determine if the pivot angle (ANGLE) equals the current
value of SUPPORTING_ANGLE. If this condition is true,
then two vertices of the viewcell form the same pivot angle
with the silhouette edge, corresponding to a SE-ME support-
ing polygon, and process flow proceeds to step 470 to set the
quadrangle between both viewcell vertices and the viewcell
edge (an SE-ME supporting polygon).

A quadrangular supporting polygon is constructed in step
470 only in the special case when the supporting angle
between the silhouette edge and two viewcell vertices is
equal. For a convex viewcell, which is assumed in the present
embodiment, this occurs only when the two supporting view-
cell vertices lie on an edge of the viewcell that is parallel to the
mesh silhouette edge. In this case, the visibility from the
viewcell “across” the silhouette edge is not determined by the
usual from-point visibility triangle but instead by a from-
segment visibility quadrangle.

Other embodiments are possible which deal with this spe-
cial case differently, for example by constructing two sup-
porting triangles and a swept triangle incident on the parallel
supporting viewcell edge. Using this approach, the resulting
corresponding adjacent UBPs will not intersect only at an
edge, but instead, they will overlap on their planes, causing a
local degeneracy of the bounded polyhedral umbra volume.
The present method of identifying quadrangular supporting
polygons avoids such degeneracies in later steps.

30

35

40

45

86

Regardless of whether the candidate supporting polygon is
a triangle or a quadrangle, the process flow proceeds from
step 470 to step 455 to determine if any unprocessed vertices
remain as described above. If viewcell vertices remain, then
process flow returns to step 475, where the next viewcell
vertex is selected. Subsequently the process follows the pre-
viously described steps.

At the final step 460, the process outputs a supporting
polygon that is either a triangle, formed by the mesh silhou-
ette edge and a vertex of the viewcell, or a quadrangle that is
formed between the mesh silhouette edge and a viewcell
edge.

Alternate embodiments of the method of constructing SV-
ME supporting polygons are possible. In one alternate
embodiment, the SUPPORTING_VERTEX corresponding
to one first-order silhouette edge is limited to those viewcell
vertices directly connected to the SUPPORTING_VERTEX
for an adjacent first-order silhouette edge, wherein the adja-
cent edges form an outside corner (convex feature) of the
mesh. This method is similar to the method employed in the
classic prior-art method of divide-and-conquer method of
constructing a convex hull in 3D. In the present application
the viewcell is a very simple polyhedron and the speedup
afforded by this method is very limited.

FIG. 4B shows a mesh object M1 and a viewcell. The
VIEWCELL and polygon mesh M1 are the same objects
shown in FIG. 7A and FIG. 7B1. In FIG. 4B the viewpoint is
between that of FIG. 7A and FIG. 7B1. A first-order silhou-
ette edge labeled B also appears in all three figures. The view
direction in FIG. 4B is very close to being parallel to edge B.
Thus edge B is seen nearly edge-on as a point. A vertex of the
polygon mesh M1 is shown as vertex V3 in FIG. 4B and FIG.
7B1.

Two candidate supporting polygons are shown as CANDI-
DATE SP1 and CANDIDATE SP2. A candidate supporting
polygon is identified for first-order silhouette edge B by con-
structing a triangle formed by edge B and a vertex of the
viewcell. The angle of that the plane of this supporting poly-
gon forms with the plane of the backfacing component poly-
gon sharing edge B is measured. This angle corresponds to the
variable SUPPORTING_ANGLE determined in step 425 of
FIG. 4A and used in steps 435 and 465 of the same figure. In
the example shown in FIG. 4B the backfacing component
polygon of first-order silhouette edge B is the triangle formed
by edge B and vertex V3.

In this example, the angle formed by CANDIDATE SP1
(corresponding to viewcell vertex V4 is indicated by a dashed
arc labeled ANGLE-1.

In this example, the angle formed by CANDIDATE SP2
(corresponding to viewcell vertex V8 is indicated by a dashed
arc labeled ANGLE-2.

From the two arcs, it is apparent that ANGLE-1 is less than
ANGLE-2. According the exemplary flowchart of FIG. 4A,
CANDIDATE SP1 would be retained as a candidate for the
actual supporting polygon on first-order silhouette. If all the
vertices of VIEWCELL are tested by the process shown inthe
exemplary flowchart of FIG. 4A it will be found that vertex
V4 results in the supporting polygon (CANDIDATE SP1)
giving the smallest supporting angle. CANDIDATE SP1 is
shown as the actual supporting polygon SPB in FIG. 7C1.

Standard angle measures can be employed to determine the
angle including the cross product between the normal vectors
of the plane of the backfacing polygon and the candidate
supporting polygon.

FIG. 4C is a flow diagram showing a test for determining if
a polygon formed between a first-order silhouette edge and a
viewcell vertex is a supporting polygon.

US 9,171,396 B2

87

Alternate embodiments are possible in which SV-ME sup-
porting polygons are identified by considering both the “sid-
edness orientation” of the candidate supporting polygon
(relative to the interior of the polygon mesh) and the orienta-
tion of the candidate supporting polygon relative to the view-
cell vertices.

In one embodiment, mesh polygons are all assumed to be
“outside” polygons which have their normal vector locally
oriented away from the “inside” of the region contained by
the polygon mesh. In such embodiments, all mesh polygons
of a polygon mesh consistently have this same “sidedness”
orientation.

A polygon is a planar structure which can have two sides,
corresponding to the two sides of the plane containing the
polygon. Exemplary embodiments include polygon meshes
which are manifold or closed. Manifold meshes divide the
volume of space in which they are embedded into an inside
and an outside. In computer graphics, it is useful to employ
manifold meshes in which the normal vector of each polygon
in the mesh is locally oriented to face away from the inside of
this enclosed volume. This can be called the “outside” side of
the polygon. The opposite side can be called the “inside” side
of'the polygon. If all polygons have this consistent sidedness
orientation in a mesh, then no inside side of a polygon should
ever be visible from the outside.

In exemplary embodiments, it can be established that poly-
gons of a mesh have the same sidedness orientation by exam-
ining the vertex orderings of adjacent polygons i.e., polygons
which share an edge. (See Schneider (2003) Schneider, Philip
J., Eberely, David H., “Geometric Tools for Computer Graph-
ics” Morgan Kaufmann 2003 pp. 342-345, the entire contents
of' which are incorporated herein by reference). Let Fjand F,
be two adjacent polygons sharing an edge comprised of two
vertices V,; and V. If vertices V| and V; occur in the order V,;
followed by V; for polygon F,, then they must occur in poly-
gon F, in the order V; followed by V,. Adjacent polygons in
which shared edges have this ordering are said to have a
consistent vertex ordering. Polygons with a consistent vertex
ordering have the same sidedness orientation. The vertex
ordering reflects the order in which the vertices are stored for
each triangle. Vertices accessed in this same order for a tri-
angle defines vectors (triangle edges) whose cross products
are the coefficients A, B, C of the plane equation or normal
vector of the triangle. In some embodiments, all mesh tri-
angles have consistent vertex orderings and all will have
normal vectors that point away from the inside of the mesh,
i.e. they are all outside facing triangles. Embodiments may
employ known algorithms to identify and repair inconsistent
vertex orderings in a polygon mesh prior to processing (See
MakeConsistent procedure of Schneider (2003), pp 345).

FIG. 4D1 is an exemplary diagram showing two adjacent
polygons F, and F| in which the polygons have a consistent
vertex ordering. Note that for polygon F, the shared edge is
accessed in V-V, order while for the adjacent polygonand F,
the same shared edge is accessed in V;-V |, thus meeting the
definition of consistent ordering. Adopting a right-hand rule
convention, the normal of both polygons points out of the
plane of the image.

FIG. 4D2 is an exemplary diagram showing two adjacent
polygons F, and F, in which the polygons do not have a
consistent vertex ordering.

In one embodiment, a candidate SV-ME supporting poly-
gon for a first-order silhouette edge is formed between a
viewcell vertex and the first-order silhouette edge. The can-
didate supporting polygon is given the same sidedness orien-
tation as the backfacing mesh polygon sharing the first-order
silhouette edge. (Using this consistent sidedness orientation,

10

15

20

25

30

35

40

45

50

55

60

65

88

for example, a person walking across the first-order silhouette
edge on the “outside” surface of the backfacing mesh polygon
would encounter the “outside” surface of the candidate sup-
porting polygon). The orientation of the plane of each candi-
date supporting polygon is then examined relative to the
viewcell vertices. If the plane of the candidate supporting
polygon is not front-facing with respect to each viewcell
vertex, then the viewcell vertex forming the candidate sup-
porting polygon is a supporting viewcell vertex, and the can-
didate supporting polygon is a supporting polygon.

According to some embodiments, the employed definition
of front-facing with respect to a viewcell vertex excludes
viewcell vertices which are in the plane of the candidate
supporting polygon (i.e. admitting a supporting viewcell ver-
tex as not front-facing). Alternate embodiments can employ
variations of the definitions of backfacing and front facing to
determine that a candidate supporting polygon is not front-
facing with respect to each viewcell vertex. In at least one
exemplary embodiment, the test includes establishing that the
candidate supporting polygon is backfacing with respect to
each viewcell vertex, where the definition of a plane that is
backfacing to a vertex includes vertices which are in the plane
(i.e. admitting a supporting viewcell vertex as backfacing to a
supporting polygon).

According to some embodiments, the process illustrated in
FIG. 4C is entered from step 480. In step 480 a candidate
supporting polygon is formed between the first-order silhou-
ette edge and a viewcell vertex (V).

Process flow proceeds to step 485 to set the sidedness
orientation of the candidate supporting polygon formed in
step 480 to be the same as the backfacing component polygon
sharing the first-order silhouette edge.

Process flow proceeds to step 487 to determine if the can-
didate supporting polygon is not front-facing for each of the
viewcell vertices. If, in decision step 487, it is determined that
the candidate supporting polygon is not front-facing with
respect to each viewcell vertex then process flow proceeds to
step 491 to identify the viewcell vertex (V) as a supporting
viewcell vertex and to identify the candidate supporting poly-
gon as a supporting polygon.

If, in decision step 487, it is determined that the candidate
supporting polygon is front-facing for any viewcell vertex
then process flow proceeds to step 489 to identify the viewcell
vertex (V) as not a supporting viewcell vertex and to identify
the candidate supporting polygon as not a supporting poly-
gon.

The test illustrated by exemplary flowchart of FIG. 4C can
also be employed to identity SE-ME type supporting poly-
gons.

FIG. 5A and FIG. 5B Flowchart Showing a Method of Con-
structing SE-MV Supporting (Swept) Triangles

FIG. 5A and FIG. 5B comprise a flowchart showing the
method of constructing SE-MV supporting swept triangles
incident on an inside corner mesh silhouette vertex. This is
additional detail of the step 130 of FIG. 1. According to some
embodiments, the process illustrated in FIGS. 5A and 5B is
entered from step 130 in FIG. 1.

In some embodiments, the process of constructing SE-MV
supporting swept triangles starts at step 510 upon encounter-
ing an inside corner of a first-order silhouette contour of a
polygon mesh. This inside corner may be formed from a
simple first-order silhouette contour in which two first-order
silhouette edges share a vertex. Ifthe normals of the silhouette
edges forming the intersection (with normal direction
assumed to be facing away from the interior of their compo-
nent polygons) are facing each other, then the intersection is
an inside corner vertex.

US 9,171,396 B2

89

Alternatively, the inside corner may be a vertex of a com-
pound silhouette contour formed by the intersection of a
wedge with a first-order silhouette edge. In the latter case, the
inside corner silhouette mesh silhouette vertex is called a
compound silhouette vertex (CSV).

Process flow proceeds to step 515 to identify the supporting
viewcell vertex (SVV) for one of the silhouette edges forming
the vertex using, for example, the process disclosed in FIG.
4A. The identity of this vertex is stored as the variable
SVV_START. Process flow proceeds to step 520, were the
process for step 515 is repeated for the other edge of the inside
corner, and the result is stored as the variable SVV_END.

If either supporting polygon of the inside corner is a quad-
rangle (generated in FIG. 4A, step 470) then the supporting
polygon has two SVVs. In this special case, care must be
taken to select, in steps 515 and 520, the initial (SV-
V_START) or terminal (SVV_END) viewcell vertex in the
chain as the vertex that is farthest removed from the other end
of the chain.

Process flow proceeds to step 525, where the variable
CURRENT_POLYGON is set to identify the supporting
polygon between the viewcell vertex SVV_START and the
corresponding supported edge of the polygon mesh.

Process flow proceeds to step 530, where an initial point for
the sweep of the viewcell silhouette contour, which ultimately
occurs between the viewcell vertices SVV_START and
SVV_END, is set to be the viewcell vertex SVV_START and
stored as the variable CVV, which holds the current vertex of
the sweep.

Process flow proceeds to decision step 535 to compare
CVV to SVV_END to determine if the sweep should be
terminated.

If, in decision step 535, it is determined that the current
viewcell vertex being processed (CVV) is the same as the last
vertex in the sweep (SVV_END), then process flow proceeds
to step 540 and terminates. If both edges of the inside corner
have the same supporting point on the viewcell then the
corresponding SV-ME wedges intersect along a common
edge and there is no swept triangle corresponding to the inside
corner vertex. This situation would be identified on the initial
execution of step 535 and the sweep would be terminated
without producing a swept triangle.

If, in decision step 535, it is determined that CVV is not
SVV_END, then process flow proceeds to step 545 to set a
variable CURRENT_ANGLE to a maximum value.

Process flow proceeds to step 550, where a first viewcell
edge sharing the viewcell vertex CVV is selected and refer-
enced by the variable EDGE.

Process flow proceeds to decision step 555 to determine if
the edge EDGE is a (from-point) silhouette edge with respect
to the inside corner mesh silhouette vertex MV.

If, in decision step 555, it is determined that EDGE is a
from-MV silhouette edge, then process flow proceeds to step
560 to form the triangle between the point MV and the edge
EDGE. This triangle is a candidate swept triangle between
MYV and the viewcell, but it must be compared to other swept
triangle candidates that share the same viewcell edge.

Process flow proceeds to 565, where the comparison of
these other swept triangle candidates begins. In this regard,
the angle between the current swept triangle candidate TRI-
ANGLE and the CURRENT_POLYGON (supporting poly-
gon) incident on MV is measured. The value is stored
in the wvariable ANGLE. Since TRIANGLE and
CURRENT_POLYGON share a common edge, the angle can
be measured at the edge, adopting the convention that the
angle is the angle between the occluded sides of each poly-
gon. The occluded side of a supporting polygon is the side that

10

15

20

25

30

35

40

45

50

55

60

65

90

connects to the interior of the mesh polygon at the silhouette
edge. The occluded side of the candidate swept triangle is the
side that connects to the interior of the mesh polygons at the
vertex MV. This angle is stored in the variable ANGLE.

Alternate embodiments are possible in which the orienta-
tion of the swept triangle and corresponding SE-MV wedge
relative to neighboring wedges is examined. All wedges are
oriented surfaces having a “visible” side and an “invisible”
side. For SE-MV wedges the visible side is the unoccluded
side (visible on this side as a result of being not occluded by
mesh polygon beyond the corresponding first-order silhou-
ette edge). For SV-ME wedges the visible side is the “con-
tained” side (visible as a result of being contained in the
viewcell when looking through and beyond the correspond-
ing inside-corner first-order silhouette vertex.

In one embodiment the SWEPT _TRIANGLE is con-
structed from MV viewcell edges which produce a
SWEPT_TRIANGLE that has a containment orientation that
is consistent with the occlusion orientation of an adjacent
SE-MV wedge and consistent with the containment orienta-
tion of neighboring SV-ME wedges. SV-ME wedge which do
not have this consistent orientation do not contribute to the
continuous, conservative linearized umbral event surface.

The orientation of an SV-ME wedge is opposite to the
orientation of the corresponding SV-ME supporting polygon.
This inversion occurs as a result of the edges of the SV-ME
supporting polygons being effectively “projected” through
the inside-corner first-order silhouette vertex to form the cor-
responding SV-ME wedge. (e.g. a particular SE-MV support-
ing polygon which has the containment shaft between the
viewcell and the inside-corner first-order silhouette vertex
“below” the supporting polygon in the negative Y direction
will produce a corresponding SE-MV wedge which has its
“contained” or visible side in the positive Y direction.

Process flow proceeds to decision step 570, to determine if
this angle (ANGLE) is less than the current value of CUR-
RENT_ANGLE.

If, in decision step 570, it is determined that the current
value of ANGLE is less than the value of CURREN-
T_ANGLE, then TRIANGLE is a candidate swept triangle
and process flow proceeds to process 5-1, which starts at step
580 in FIG. 5B.

In step 580, the variable CURRENT-ANGLE is set to the
value of ANGLE.

Process flow proceeds to step 585 to set the variable
SWEPT_EDGE to refer to the edge EDGE.

Process flow proceeds to step 590 to set the variable
SWEPT_TRIANGLE to reference the triangle TRIANGLE.

Process flow proceeds to decision step 591 to determine if
any other edges sharing the current viewcell vertex CVV have
been unprocessed.

If, in decision step 591, it is determined that unprocessed
edges sharing the viewcell vertex remain, then process flow
proceeds to process 5-3, which returns the process flow to step
575 (FIG. 5A), where the variable EDGE is set to reference
the next viewcell edge sharing the vertex CVV. Process flow
then returns to step 555 to generate the next candidate swept
triangle and test it.

If, in decision step 591, is determined that no other unproc-
essed viewcell edges share the vertex, then process flow pro-
ceeds to step 592, where the CURRENT_POLYGON vari-
able is set to reference the triangle SWEPT_TRIANGLE.

Process flow proceeds to step 593 to output the swept
triangle SWEPT_TRIANGLE.

Process flow proceeds to step 594 to construct a SE-MV
wedge from the swept triangle. Further details of this step is
disclosed in FIG. 6B.

US 9,171,396 B2

91

Process flow then proceeds to process 5-4, which starts at
step 594 (FIG. 5A) to advance to the next connected viewcell
vertex. Process flow then returns to step 535.

If, in decision step 555, it is determined that the viewcell
edge is not a from-point silhouette edge from the point MV,
then process flow proceeds to process 5-2, which starts at step
591 (FIG. 5B) to select a remaining viewcell edge for pro-
cessing.

FIG. 5C is a flow diagram showing a test for determining if
apolygon formed between an inside-corner first-order silhou-
ette vertex and a viewcell edge is a supporting polygon.

Alternate embodiments are possible in which SE-MV sup-
porting polygons are identified by considering both the “sid-
edness orientation” of the candidate supporting polygon
(relative to the interior of the polygon mesh) and the orienta-
tion of the candidate supporting polygon relative to the view-
cell vertices.

In one embodiment, mesh polygons are all assumed to be
“outside” polygons which have their normal vector locally
oriented away from the “inside” of the region contained by
the polygon mesh. In such embodiments, all mesh polygons
of a polygon mesh consistently have this same “sidedness”
orientation.

As previously described, a polygon is a planar structure
which can have two sides, corresponding to the two sides of
the plane containing the polygon. Exemplary embodiments
include polygon meshes which are manifold or closed. Mani-
fold meshes divide the volume of space in which they are
embedded into an inside and an outside. In computer graph-
ics, it is useful to employ manifold meshes in which the
normal vector of each polygon in the mesh is locally oriented
to face away from the inside of this enclosed volume. This can
be called the “outside” side of the polygon. The opposite side
can be called the “inside” side of the polygon. If all polygons
have this consistent sidedness orientation in a mesh, then no
inside side of a polygon should ever be visible from the
outside.

In exemplary embodiments, it can be established that poly-
gons of a mesh have the same sidedness orientation by exam-
ining the vertex orderings of adjacent polygons i.e., polygons
which share an edge. (See Schneider, Philip J., Eberely, David
H., “Geometric Tools for Computer Graphics” Morgan Kauf-
mann 2003 pp. 342-345, the entire contents of which are
incorporated herein by reference). Let F, and F, be two adja-
cent polygons sharing an edge comprised of two vertices V,
andV,. Ifvertices V, and V, occurinthe order V| followed by
V, for polygon F,,, then they must occur in polygon F, in the
order V, followed by V. Adjacent polygons in which shared
edges have this ordering are said to have a consistent vertex
ordering. Polygons with a consistent vertex ordering have the
same sidedness orientation.

In one embodiment, a candidate SE-MV supporting poly-
gon for an inside-corner first-order silhouette vertex is formed
between a viewcell edge and the inside-corner first-order
silhouette vertex. The candidate supporting polygon is given
the same sidedness orientation as a backfacing mesh polygon
sharing a first-order silhouette edge of the inside-corner first-
order silhouette vertex. (Using this consistent sidedness ori-
entation, for example, a person walking across the first-order
silhouette edge on the “outside” surface of the backfacing
mesh polygon would encounter the “outside” surface of the
candidate supporting polygon). The orientation of the plane
of each candidate supporting polygon is then examined rela-
tive to the viewcell vertices. If the plane of the candidate
supporting polygon is not front-facing with respect to each
viewcell vertex then the viewcell edge forming the candidate

25

40

45

92

supporting polygon is a supporting viewcell edge, and the
candidate supporting polygon is a supporting polygon.

According to some embodiments the process illustrated in
FIG. 5C is entered from step 595. In step 595 a candidate
supporting polygon is formed between the inside-corner first-
order silhouette vertex and a viewcell edge (E). Process flow
proceeds to step 596 to set the sidedness orientation of the
candidate supporting polygon formed in step 595 to be the
same as the backfacing component polygon sharing a first-
order silhouette edge of the inside-corner first-order silhou-
ette vertex. In exemplary embodiments, the sidedness orien-
tation of the SE-MV supporting polygon can be set to be
consistent with a previously determined adjacent SV-ME or
SE-MV supporting polygon. Because the SE-MV supporting
polygon shares an edge with these adjacent polygons the
sidedness orientation can be set by insuring that the adjacent
polygons have consistent vertex ordering.

Process flow proceeds to step 597 to determine if the can-
didate supporting polygon is not front-facing for each of the
viewcell vertices. If, in decision step 597, it is determined that
the candidate supporting polygon is not front-facing with
respect to each viewcell vertex then process flow proceeds to
step 599 to identify the viewcell edge (E) as a supporting
viewcell edge and to identify the candidate supporting poly-
gon as a supporting polygon.

If, in decision step 597, it is determined that the candidate
supporting polygon is front-facing for any viewcell vertex
then process flow proceeds to step 598 to identitfy the viewcell
edge (E) as not a supporting viewcell edge and to identify the
candidate supporting polygon as not a supporting polygon.
FIG. 6A Flowchart Showing a Method of Constructing SV-
ME and SE-ME Wedges from the Corresponding SV-ME and
SE-ME Supporting Polygons

FIG. 6A is a flowchart showing the process of constructing
a SV-ME wedge from the corresponding supporting polygon.
This provides additional detail to the step 116 in FIG. 1.
According to some embodiments, the process illustrated in
FIG. 6A is entered from step 116 in FIG. 1.

In some embodiments, the process to construct SV-ME and
SE-ME wedges from corresponding SV-ME and SE-ME sup-
porting polygons starts at step 610, where the connecting
edges of the supporting polygon are identified as those edges
which have one vertex that is a vertex of the viewcell and
another vertex that is a vertex of the polygon mesh.

Process flow proceeds to step 615, to construct rays from
the connecting edges by extending the connecting edges in a
semi-infinite fashion away from the viewcell starting at the
corresponding vertices of the supported silhouette edge. If the
supporting polygon is a triangle, then the two edges that
connect the viewcell and the silhouette edge are extended. If
the supporting polygon is a quadrangle (from FIG. 4A, step
470), then the diagonals connecting the viewcell edge and
silhouette edge can be extended. Extending the diagonals
produces a larger wedge that actually reflects the visibility
from the viewcell edge through the silhouette edge.

Process flow proceeds to step 620 to connect the extended
edges to the corresponding (supported) polygon mesh silhou-
ette edge to form the semi-infinite SV-ME (or SE-ME)
wedges.

FIG. 65 Flowchart Showing a Method of Constructing SE-
MV Wedges from the Corresponding SE-MV Supporting
Polygons

FIG. 6B is a flowchart showing the process of constructing
a SE-MV wedge from the corresponding swept triangle. This
provides additional detail to the step 135 in FIG. 1. According
to some embodiments, the process illustrated in FIG. 6B is
entered from step 135 in FIG. 1.

US 9,171,396 B2

93

In some embodiments, the process of constructing a SE-
MV wedge from the corresponding swept triangle starts at
step 630, where the connecting edges of the swept triangle are
identified as those edges which have one vertex that is a vertex
of the viewcell and another vertex that is a vertex of the
polygon mesh.

Process flow proceeds to step 635 to construct rays from
the connecting edges by extending the these edges in a semi-
infinite fashion away from the viewcell starting at the corre-
sponding mesh silhouette vertex.

Process flow proceeds to step 640 to connect the extended
edges to the corresponding polygon mesh inside corner sil-
houette vertex to form the semi-infinite wedge.

The process of FIGS. 6A and 6B describe the construction
of first-order wedges that are only restricted by their intersec-
tion with adjacent wedges on the silhouette contour. These
may be called the initial wedges.

According to some embodiments, in subsequent process-
ing, for example in the construction of first-order visibility
maps, these initial wedges may later be intersected with mesh
polygons and with other wedges. Initial wedges may also be
explicitly intersected with other wedges to form umbral
boundary polygons (UBPs), which bound the conservative
from-viewcell polyhedral aggregate umbral volumes that
contain (conservatively) occluded regions.

FIG. 7-FIG. 11 Detailed Description—Output of First
Embodiment

FIG. 7A is a diagram showing a convex viewcell having
vertices V-V and a non-convex polygon mesh M1. First-
order, from-viewcell silhouette edges of the mesh are shown
in bold lines. Two of the first-order silhouette edges are
labeled A and B. This is a perspective view looking in general
direction from the viewcell toward the polygon mesh.

First-order silhouette edge A has one component polygon
that is front facing for at least one viewcell vertex. This
component polygon is the triangle formed by edge A and the
mesh vertex labeled MV1. The other component polygon for
edge A is the triangle formed by edge A and the mesh vertex
MV2 which is shown in FIG. 7B1. This component polygon
is backfacing for all vertices V-V of the viewcell. Note that
these two component polygons sharing edge A are backfacing
with respect to each other, making the edge A a locally sup-
porting edge of the polygon mesh M1 and a first-order sil-
houette edge. It can be determined that the two component
polygons sharing edge A are backfacing by selecting a first
component polygon, e.g. the triangle formed by edge A and
vertex MV2, and determining if a vertex of the other compo-
nent polygon which is not part of the shared edge, e.g. vertex
MV1 in this case, is on the front side or the back side of the
plane containing the first polygon. If the unshared vertex is on
the back side of the other component polygon’s plane then the
two component polygons are backfacing, as in this case. This
determination can be made using the plane equation as
described in the definition of “backfacing” provided in the
glossary of terms. In some embodiments, the process illus-
trated in FIG. 3 is repeated for each edge included in polygon
mesh M1 to identify each first order silhouette edge of poly-
gon mesh M1.

FIG. 7B1 is a diagram showing the same polygon mesh
object M1 as FIG. 7A, but from a perspective view looking in
a general direction from the polygon mesh toward the view-
cell. From this view, edge B has one component triangle
(formed by edge B and mesh vertex MV3) that is backfacing
for all vertices V-V, of the viewcell. As illustrated in FIG.
7A, edge B has another component triangle formed by edge B
and mesh vertex MV1 that is front facing to at least one
viewcell vertex. Further, these two component polygons shar-

10

15

20

25

30

35

40

45

55

60

65

94

ing edge B are backfacing with respect to each other, making
the edge B a locally supporting edge of the polygon mesh M1
and a first order silhouette edge.

FIG. 7B2 shows a different polygon mesh than the one
depicted in FI1G. 7B1. This polygon mesh is labeled M3. One
edge of polygon mesh M3 is shown bolded and labeled I. This
edge has one component polygon which is a triangle labeled
T1, and another component polygon which is a triangle
labeled T2.

Component polygon T1 is backfacing for all vertices of the
viewcell labeled VIEWCELL since all of the viewcell verti-
ces are on the back side of the plane containing triangle T1.

Component triangle T2 has at least one viewcell vertex that
is on the front side of the plane containing triangle T2, that is
T2 is front facing with respect to at least one viewcell vertex.

Consequently, component triangles T1 and T2 meet two of
the criteria required to make their shared edge a first-order
silhouette edge with respect to the viewcell.

However the shared edge 1, is not a first-order silhouette
edge because the two component triangles are not backfacing
with respect to each other. This can be determined by select-
ing triangle T1 and identifying a vertex of the other compo-
nenttriangle (T2) that is not a vertex of the shared edge. In this
case the vertex is P2. The vertex P2 is on the front side of the
plane containing the other component triangle T1. This fact
can be established using the plane equation of triangle T1 as
described in the glossary of terms description for “backfac-
ing”.

Since T1 and T2 are not backfacing with respect to each
other they would, in one embodiment, fail the decision test
shown in the exemplary flowchart of FIG. 3 at steps 345 OR
330.

FIG.7C1 is a diagram showing the supporting polygons for
the first-order silhouette edges A and B. The supporting poly-
gon for first-order silhouette edge A is labeled SPA, and the
supporting polygon for the first-order silhouette edge B is
labeled SPB. The corresponding supporting viewcell vertices
(SVVs) are labeled, respectively SVVA and SVVB, which
correspond to viewcell vertices V, and Vg, respectively. This
is a perspective view looking in a general direction from
viewcell toward mesh object.

FIG. 7C2 is a diagram showing the supporting polygons
SPA and SPB for the first-order silhouette edges A and B,
respectively, and the corresponding source-vertex mesh-edge
(SV-ME) wedges. The supporting polygon for first-order sil-
houette edge A is labeled SPA, and the supporting polygon for
the first-order silhouette edge B is labeled SPB. The corre-
sponding supporting viewcell vertices (SVVs) are labeled,
respectively SVVA and SVVB. The SV-ME wedge is formed
by extension of supporting polygon SPA is labeled SV-ME
WA. The SV-ME wedge is formed by extension of supporting
polygon SPB is labeled SV-ME WB. According to some
embodiments, the SV-ME wedges WA and WB are con-
structed according to the processes illustrated in FIGS. 1, 4,
and 6A. This is a perspective view looking in a general direc-
tion from viewcell toward mesh object.

FIG. 7C3 is a diagram showing only the SV-ME wedges
formed from the extension of the edges of the corresponding
supporting polygons. The SV-ME wedge formed by exten-
sion of supporting polygon SPA is labeled SV-ME WA. The
SV-ME wedge formed by extension of supporting polygon
SPB is labeled SV-ME WB. The corresponding supporting
viewcell vertices (SVVs) are labeled, respectively SVVA and
SVVB. This is a perspective view looking in a general direc-
tion from viewcell toward mesh object.

Although FIGS. 7C1-7C3 show wedges incident on first
order silhouette edges A and B, further embodiments con-

US 9,171,396 B2

95

struct wedges for each first order silhouette edge included in
the first order silhouette contour included in mesh M1 accord-
ing to the processes illustrated in FIGS. 1 and 3-6B.

FIG. 7D1 is a diagram showing the same objects as FIG.
7C1, but from a perspective view looking in a general direc-
tion from mesh object M1 toward the viewcell.

FIG. 7D2 is a diagram showing the same objects as FIG.
7C2, but from a perspective view looking a general direction
from mesh object M1 toward viewcell.

FIG. 7D3 is a diagram showing the same objects as FIG.
7C2, but from a perspective view looking a general direction
from mesh object M1 toward viewcell.

FIG. 7D4 shows the same polygon mesh and viewcell as
FIG. 7D3, from the same perspective. FIG. 7D4 shows two
pivoted wedges intersecting at an outside corner vertex of a
first-order silhouette contour.

One of the pivoted wedges is labeled SV-ME WA, which is
also seen in FIG. 7D3. In FIG. 7D4 an additional pivoted
wedge SV-ME WC is shown. This wedge is supported by the
first-order silhouette edge labeled C, and the supporting view-
cell vertex labeled SVVC.

The two pivoted wedges SV-ME WA and SV-ME WC
share an outside corner vertex of a first-order silhouette edge.
This vertex is labeled OCV. As prescribed in steps 125 and
140 ofthe exemplary flowchart of FIG. 1, in one embodiment
pivoted polygons which share an outside corner vertex are
intersected with each other.

Pivoted polygons which share an outside corner silhouette
vertex and which pivot to the same supporting viewcell vertex
will intersect each other exactly at a shared edge. In this case
the shared edge is a ray extending from the shared vertex and
on the line formed by the supporting viewcell vertex and the
shared outside corner vertex. In this special case the two
pivoted wedges restrict each other on the shared edge.

(Pivoted polygons which share an inside corner silhouette
vertex and which pivot to the same supporting viewcell vertex
also intersect each other exactly at the shared edge. In this
case no swept supporting polygon exists and the correspond-
ing swept wedge is not generated.)

In the general case, pivoted wedges sharing an outside
corner vertex can pivot to different supporting viewcell ver-
tices. In FIG. 7D4 wedge SV-ME WA is supported by view-
cell vertex V,,, while SV-ME WC is supported by SVVC. In
this case, the intersection of wedge SV-ME WA and SV-ME
WC is the line segment labeled I. Line segment I divides
wedge SV-ME WC into two parts. The proximal part of the
subdivided wedge SV-ME WC is bounded by line segment I
and the vertex labeled VE. A portion of this proximal part is
occluded in this view.

This proximal part of wedge SV-ME WC is completely
seen in FIG. 7D5, which shows the same objects as FIG. 7D4,
from a different perspective. This proximal part is labeled
SV-ME WCR in FIG. 7D5.

In general, the intersection of two pivoted wedges sharing
an outside-corner vertex and pivoting to different supporting
viewcell vertices will result in one of the wedges being
restricted into a proximal portion [e.g., SV-ME WCR (indi-
cating wedge C restricted)] and a distal portion. Only the
proximal portion of such a locally restricted wedge is actually
a from-viewcell umbral event surface. [Only this proximal
portion is a polygon of the corresponding polyhedral aggre-
gate umbra (PAU).] The distal portion, beyond the restriction
and in a direction away from the viewcell does not represent
a from-viewcell umbral event surface, since it is entirely on
the unoccluded side of the adjacent wedge. In the example
shown in FIG. 7D4 and FIG. 7D5, mesh polygons on both the
unoccluded and the occluded side of the distal portion of

40

45

55

96

SV-ME WC are actually unoccluded from viewcell vertex
SVVA, and are therefore not occluded from the viewcell.

This local restriction of a pivoted wedge by an adjacent
pivoted wedge sharing an outside corner silhouette vertex in
some instances produces a substantially smaller wedge. This
smaller, locally restricted wedge can require substantially
less processing when it is submitted for the determination of
on-wedge visibility since it has an additional containment
boundary that limits processing (e.g. at step 1515 in one
embodiment using 2D mesh traversal process shown in exem-
plary flowchart FIG. 15).

The local restriction process can therefore accelerate the
determination of on-wedge visibility. Alternate embodiments
which do not use this local restriction process can also be
employed. Any wedges that have not been restricted by other
wedges still intersect mesh polygons to produce discontinuity
mesh segments. The determination of whether such a discon-
tinuity segment is actually a from-viewcell umbral boundary
is then made using the modified point-in polyhedron test
described in the exemplary flowcharts of FIG. 25. This test
accommodates both locally restricted and unrestricted
wedges.

The preceding discussion assumes that the wedges
employed are first-order wedges. Higher-order wedges are
subjected to wedge-wedge intersection (restriction by other
wedges) as described in one embodiment for example in step
2155 of the exemplary flowchart showing a method for deter-
mining if a DM_SEG is an actual from-viewcell occlusion
boundary segment.

FIG. 8A1 is a diagram showing a swept triangle (a SE-MV
supporting polygon) on the inside corner vertex shared by
first-order silhouette edges labeled A and B of mesh object
M1. The swept triangle is labeled ST_AB. In some embodi-
ments, the swept triangle ST_AB is generated using the
sweep process shown in FIG. 5A and FIG. 5B, with the sweep
occurring from SVVA (V,) to SVVB (V,) and anchored on
the inside-corner silhouette vertex labeled ICSV. In this case,
the inside-corner mesh silhouette vertex is a simple inside-
corner of the first-order silhouette contour (i.e., the contour
formed by all the first-order silhouette edges of mesh object
M1), formed where two first-order silhouette edges share a
vertex. This is a perspective view looking in a general direc-
tion from viewcell toward mesh object similar to the view
shown in FIG. 7A and FIG. 7C1.

FIG. 8A2 is a diagram showing a swept triangle (a SE-MV
supporting polygon) on the inside corner vertex shared by
first-order silhouette edges labeled A and B. The swept tri-
angle is labeled ST_AB, and is generated, according to some
embodiments, using the sweep process shown in FIG. 5A and
FIG. 5B, with the sweep occurring from SVVA (V) to SVVB
(Vg) and anchored on the inside-corner silhouette vertex
labeled ICSV. In this case, the inside-corner mesh silhouette
vertex is a simple inside-corner of the first-order silhouette
contour, formed where two first-order silhouette edges share
avertex. The corresponding SE-MV wedge, formed by exten-
sion of the swept triangle, is labeled SE-MV WAB. According
to some embodiments, the SE-MV wedge WAB is formed
according to the process illustrated in FIG. 6B. In this regard,
the edges of the polygon ST-AB are extended through the
inside corner vertex to form SE-MV WAB. This is a perspec-
tive view looking in a general direction from viewcell toward
mesh object similar to the view shown in FIG. 7A and FIG.
7C2.

FIG. 8A3 is a diagram showing the inside-corner silhouette
vertex labeled ICSV. The corresponding SE-MV wedge,
formed by extension of the swept triangle is labeled SE-MV
WAB. This is a perspective view looking in a general direc-

US 9,171,396 B2

97
tion from viewcell toward mesh object similar to the view
shown in FIG. 7A and FIG. 7C3.

FIG. 8A4 is a diagram showing the first-order conservative
linearized umbral event surface (CLUES) incident on the
silhouette edges A and B. As illustrated in FIGS. 8A4, a
continuous umbral event surface is comprised of the two
SV-ME wedges (labeled SV-ME WA and SV-ME WB)and, in
this case, the single SE-MV wedge (labeled SE_MV WAB).
The corresponding supporting viewcell vertices SVVA and
SVVB are labeled as is the inside corner first-order silhouette
vertex labeled ICSV. This is a perspective view looking in a
general direction from viewcell toward mesh object. As illus-
trated in FIG. 8A4, the CLUES comprised of SV-ME WA,
SE-MV WAB, and SV-ME WB form an occlusion boundary,
where the unoccluded side of the boundary is in the direction
of arrow U1, and the occluded side is in the direction of arrow
O1.

FIG. 8B1 is a diagram showing the same objects as FIG.
8A1, but from a perspective view looking in a general direc-
tion from mesh object M1 toward the viewcell.

FIG. 8B2 is a diagram showing the same objects as FIG.
8A2, but from a perspective view looking in a general direc-
tion from mesh object toward the viewcell.

FIG. 8B3 is a diagram showing the same objects as FIG.
8A3, but from a perspective view looking in a general direc-
tion from mesh object M1 toward the viewcell.

FIG. 8B4 is a diagram showing the same objects as FIG.
8Ad, but from a perspective view looking in a general direc-
tion from mesh object M1 toward the viewcell.

FIG. 8C, the same as FIG. 8A4, is a diagram showing the
first-order conservative linearized umbral event surface
(CLUES) incident on the silhouette edges A and B. This
continuous umbral event surface is comprised of the two
SV-ME wedges (labeled SV-ME WA and SV-ME WB)and, in
this case, the single SE-MV wedge (labeled SE_MV WAB).
This is a perspective view looking in a general direction from
viewcell toward mesh object.

FIG. 9A is a diagram showing the umbral event surfaces
incident on silhouette edges A and B constructed by the prior
art approach of the linearized antipenumbra described by
Teller (1992). In this prior art method, which was used only
for the limited problem of portal sequence visibility, the
umbral event surface is constructed entirely from the planes
of the supporting polygons. Portions of these supporting
planes incident on silhouette edges A and B are shown and
labeled WPLANE_A and WPLANE_B. These planes inter-
sect at line [.1 to form a continuous visibility event surface
incident on silhouette edges A and B.

In Teller’s prior-art method of linearized antipenumbra,
Teller (1992), visibility event surfaces are approximated by
intersecting only the planes of supporting polygons incident
on portal edges and supported by source vertices wherein the
source is an earlier portal in a sequence of portals. Theses
supporting polygons correspond to the SV-ME supporting
polygons (using the nomenclature of the present embodi-
ments). Teller’s method does not employ the corresponding
SE-MV supporting polygons in the construction of umbral
event surfaces, but the planes of these polygons.

In contrast, SV-ME wedges, as constructed by the present
embodiments, are semi-infinite polygons, restricted laterally
by the semi-infinite extension of the supporting polygon
edges, which are rays. The SV-ME wedges are also restricted
at the corresponding first-order silhouette edge. Teller
“wedges” are actually planes that have no lateral restriction.
The present embodiments of constructing “Teller Wedges™ is
to extend the planes of adjacent SV-ME wedges at an inside
corner until the planes intersect.

10

15

20

25

30

35

40

45

50

55

60

65

98

In the following analysis, we show that by using visibility
event surfaces constructed from both SV-ME and SE-MV
supporting polygons, the present method can provide a sig-
nificantly more precise from-region visibility solution than
by using Teller’s approach in which the planes of only one
type of supporting polygon are intersected.

It must be emphasized that the method of Teller (1992) is
designed only to provide a solution to the restricted visibility
problem of visibility through a sequence of polygonal portals.
Teller’s method does not identify silhouette edges on which to
construct visibility event surfaces, because in Teller’s
method, the edges supporting visibility event surfaces are
limited to the edges of the portals. Since Teller’s method does
not apply the intersecting-planes method to construct visibil-
ity event surfaces on silhouette edges of general polygon
meshes; the following analysis amounts to a theoretical com-
parison of Teller’s intersecting-planes method if it were
applied to the general problem of from-region visibility in
polyhedral environments versus the present method of pivot-
and-sweep visibility event surface construction, which is
actually used in the more general visibility problem.

FIG. 9B is a diagram showing the same objects as FIG. 9A,
but from a perspective view looking in a general direction
from mesh object toward viewcell.

FIG. 9C and FIG. 9D are a diagrams showing the more
precise umbral event surface produced by the present method
as compared to the umbra event surface that would be pro-
duced by the prior art method of intersecting supporting
planes. In FIG. 9C and FIG. 9D, the umbral event surface
formed by the present method of pivot and sweep construc-
tion of wedges is shown superimposed on the umbral event
surface formed by the prior-art method of intersecting sup-
porting planes. From the perspective view of FIG. 9D, look-
ing in a general direction from viewcell toward mesh object,
it can be seen that the present method produces a larger, more
precise, umbra volume than the prior art method. The addition
of'the SE-MV wedge generated from the swept triangle (SE-
MYV supporting polygon) produces a larger conservative
umbra volume (and hence a more precise potentially visible
set) than the intersection of the supporting planes alone.
Unlike the prior art method of intersecting planes, the present
method of sweeping the viewcell silhouette contour can
account for the effect of containment on the viewcell surface
on the visibility at inside corner silhouette vertices. Conse-
quently, for any silhouette contour with inside corner vertices
in which adjacent supporting polygons pivot to different ver-
tices of the viewcell, the present method will produce a more
precise result than the intersecting-planes approach.

FIG. 9D also shows that the deviation between the umbral
event surfaces produced by the present pivot-and-sweep
method and the prior-art intersecting planes method tends to
increase with distance from the supported silhouette edges
and vertex. Consequently, for most inside-corner silhouette
vertices, the precision of the present method can be much
higher than the prior-art method of using intersecting planes.

FIG. 9D is a diagram showing the same objects as FIG. 9C,
but from a perspective view looking in a general direction
from mesh object toward viewcell.

Flipbook Views of Identifying Conservative Supporting
Polygons and Constructing Corresponding Wedges.

Subsets of FIGS. 7-9, when viewed in specific sequences,
provide flipbook views of the method of identifying conser-
vative supporting polygons and constructing the correspond-
ing wedges. These sequences are listed below:

Pivoted supporting polygon & wedge: View generally from
behind viewcell: 7A, 7C, 7C1, 7C2,

US 9,171,396 B2

99

Pivoted supporting polygon & wedge: View generally from
in front of viewcell: 7B, 7D, 7D1, 7D2,

Swept supporting polygon & wedge: View generally from
behind viewcell: 7A, 8A, 8A1, 8A2, (8A3 showing combina-
tion of pivoted wedges and swept wedges).

Swept supporting polygon & wedge: View generally from
in front of viewcell: 7B, 8B, 8B1, 8B2, (8B3 showing com-
bination of pivoted wedges and swept wedges).

FIG.10A is a diagram showing the same mesh polygon and
viewcell as FIGS. 9A and 9B, but in a perspective view
looking in a general direction from beneath the polygon
mesh. FIG. 10A shows the same first-order visibility event
surfaces (wedges) as shown in FIG. 9C. Specifically SV-ME
WA, incident on first-order silhouette edge A, SV-ME WB,
incident on first-order silhouette edge B, and SE-MV WAB
are shown.

Two additional first-order SV-ME wedges, W4 and W5, are
also shown. The supporting viewcell vertex for wedges W4
and W5 is V. The intersection of these wedges is shown.
Wedges intersect each other and other mesh polygons to form
umbra boundary polygons (UBPs). These UBPs form the
surface of first-order polyhedral aggregate umbrae (PAU).
The volume of space enclosed by the PAU is first-order
occluded from the corresponding viewcell. The UBPs corre-
sponding to the intersections of the wedges are not explicitly
shown in FIG. 10A but can be inferred from the intersection
lines that are shown. Some of'the wedges that would form the
complete PAU are omitted so the interior structure of part of
the first-order PAU can be seen (e.g. intersection of wedges
W4, W5, SV-ME WA, SE-MV WAB, and SV-ME WB).

FIG. 10B is a view of the same polygon mesh (M1) as
shown in FIG. 10A. In FIG. 10B mesh M1 and the viewcell
are viewed from a perspective similar to that of FIG. 8C,
looking generally at the “top” side of mesh M1, containing
the inside corner mesh edge. This view is very different from
the view of M1 and the viewcell given in FIG. 10A. Note the
same edge of M1 is labeled E in both figures and is on the
“bottom” of mesh M1. Edge A and edge B are also labeled in
both figures.

In FIG. 10A the occluded side of the wedges is shown.

In FIG. 10B the unoccluded side of the corresponding
UPBs is shown.

FIG. 10B shows 5 UBPs that are formed by intersecting the
corresponding wedges with other wedges.

UBP-A is formed by the intersection of the corresponding
wedge (SV-ME WA) with wedge W5 (shown in FIG. 10A).
UBP-A is also restricted by the intersection of SV-ME WA
with wedge W4 shown in FIG. 10A. W4 is completely hidden
in FIG. 10B., but the intersection of W4 and wedge SV-ME
WA is shown as the edge labeled F in FIG. 10B. Edge F is an
edge of UBP-A. Additionally, UBP-A shares a common edge
with UBP-AB (which is derived from SE-MV WAB, shown
in FIG. 10A).

UBP-AB is formed by the intersection of SE-MV WAB
with wedge W4 and with the wedge of UBP-D. UBP-AB
shares a common edge with both UBP-A and UBP-B as a
consequence of the sweep construction of the corresponding
wedge SE-ME WAB. UBP-AB is also restricted by its inter-
section with the pivoted wedge corresponding to UBP-D
(which is supported by mesh edge D).

UBP-5 is formed by the intersection of the corresponding
pivoted wedge (W5 shown in FIG. 10A, which has corre-
sponding supporting viewcell vertex V) with W4, and with
SV-ME WA.

UPB-D is formed by the intersection of the wedge incident
on first-order silhouette edge D (wedge is not shown, but

20

30

40

45

50

55

65

100
having supporting viewcell vertex V) with wedges SV-ME
B, SE-MV AB, and W4 as well as the wedge supported by
edge E (wedge not shown).

The UBPs form the boundary ofthe PAU for M1. Not all of
UBPs forming the PAU of M1 are seen in the view given in
FIG. 10B.

FIG. 10B illustrates wedges which are fully restricted by
other wedges. Embodiments using such fully restricted
wedges (e.g. the output-sensitive construction of PAU in the
exemplary flowchart FIG. 26) are possible. Additionally,
embodiments using partially restricted wedges (e.g. SV-ME
wedges intersecting each other at outside-corner first-order
silhouette edges) such as may optionally be employed in the
output-sensitive construction of visibility maps shown in
exemplary flowchart of FIG. 20A which employs SV-ME
wedges that may be optionally locally restricted by intersect-
ing adjacent SV-ME wedges as described in a step 140 of the
exemplary flowchart shown in FIG. 1. Additionally, the
wedges can be used without such local wedge-wedge restric-
tion because the described methods of determining if an inter-
section of a wedge with a mesh polygon is actually an occlu-
sion boundary (employing the modified point-in-polyhedron
test) do not require the a-priori local or global restriction of a
wedge with other wedges prior to making this determination.

FIG. 11A is a diagram showing first-order visibility event
surfaces (wedges) generated by the present method in the case
of a compound silhouette contour. In this case a SV-ME
wedge (WEDGE 1) is incident on (supported by) first-order
silhouette edge A1l. WEDGE1 intersects a first-order silhou-
ette edge labeled B1. As discussed in FIG. 2A, WEDGE1
divides first-order silhouette edge B1 into an occluded side
(B10) and an unoccluded side (B1V). This view is identical
to that of FIG. 2A.

The intersection of the first-order wedge WEDGE1 with
the first-order silhouette edge is a compound silhouette vertex
labeled CSV. The compound silhouette vertex corresponds to
an inside corner of a compound silhouette contour. Using the
terminology of catastrophe theory, the CSV corresponds to a
t-vertex of the resulting manifold. Catastrophe theory
includes the study of point singularities (e.g., CSVs or T-Ver-
tex) and contour singularities (e.g., a first order silhouette
edge) on manifold surfaces (e.g., manifold mesh).

Wedge2 is a first-order visibility event surface (a SV-ME
wedge) that is supported by (incident on) the segment B1V,
which is the visible portion of the first-order silhouette edge
B1.

Thus WEDGE1 and WEDGE2 are both SV-ME wedges
that intersect at the point CSV. Since WEDGE1 and
WEDGE?2 are constructed by the pivot process (FIG. 4A and
FIG. 6A) of the pivot-and-sweep method using different sup-
porting viewcell vertices (SVV1 and SVV2, respectively) the
two wedges do not join on-edge to form a continuous umbral
visibility event surface.

The sweep process (FIG. 5A and FIG. 5B, and FIG. 6B) of
the present pivot-and-sweep method is used to construct SE-
MV wedges (SE-MV WA and SE-MV WB) which join
WEDGE1 and WEDGE?2 into a continuous umbral visibility
event surface. The wedge SE-MV WA is formed from the
supporting SE-MV triangle generated between CSV, SVV1,
and the intervening vertex IVV1 on the supporting viewcell
silhouette contour (SVSC). The extension of the two edges of
this supporting triangle through the point CSV forms the
semi-infinite wedge SE-MV WA. Similarly, the wedge SE-
MV WB is formed from the supporting SE-MV (swept) tri-
angle generated between CSV, SVV2, and the intervening
vertex IVV1 on the supporting viewcell silhouette contour

US 9,171,396 B2

101
(SVSC). The extension of the two edges of this supporting
triangle through the point CSV forms the semi-infinite wedge
SE-MV WB.

SE-MV WA and SE-MV WB connect at a common edge.
SE-MV WA shares a common edge with WEDGE1. SE-MV
WB shares a common edge with WEDGE2. The four con-
nected wedges form part of the continuous first-order umbral
visibility event surface incident on the silhouette edges Al
and B1V. The view of FIG. 11A shows the occluded side of
WEDGE1 (arrow O1) and the unoccluded (from-viewcell,
first-order visible) side of WEDGE2 (arrows U1 and U2). The
view of FIG. 11A shows the “contained” (from-viewcell,
first-order visible) side of SE-MV WA and SE-MV WB. As
illustrated in FIG. 11A the intersection of wedges WEDGE1,
SE-MV WA, SE-MV WB, and WEDGE2 forms a continuous
event surface with the arrows U1 and U2 indicating the unoc-
cluded side of the even surface. FIG. 11B is a different view
of the same structures shown in FIG. 11A. In FIG. 11B, the
view is looking up to the occluded side of WEDGE1 and the
unoccluded side of WEDGE2. FIG. 11B also shows the “con-
tained” (from-viewcell, first-order visible) side of SE-MV
WA and SE-MV WB.

This concludes a description of a first embodiment. In this
description, a process for generating first-order visibility
event surfaces is presented. Additional embodiments specify
the order of processing the polygons and edges of a mesh to
generate the first-order visibility event surfaces. Further
embodiments detail precisely how the visibility event sur-
faces are used to determine occluded polygons and polygon
fragments. In the following detailed description of an alter-
nate embodiment, a mesh traversal algorithm is disclosed in
which first-order wedge construction and from-viewcell vis-
ibility determination are efficiently interleaved in a front-to-
back visibility map construction algorithm which tends to
have output-sensitive performance.

FIG. 11C shows the same two polygon meshes as depicted
in FIG. 2B, FIG. 11A and FIG. 11B. FIG. 2B and FIG. 11C
both show a higher-order pivoted wedge labeled
WEDGE_HIGH. This wedge is constructed by the back-
projection method of identifying a visible supporting view-
cell vertex discussed in conjunction with FIG. 2B and related
figures. In this case the visible supporting viewcell vertex for
the first order silhouette edge segment B1V is labeled VSVV.

FIG. 11A shows that the first-order pivoted wedge incident
on B1V is labeled WEDGE2. FIG. 11A shows that a continu-
ous umbral event surface is formed by first-order pivoted
wedges and swept wedges all of which intersect at a com-
pound silhouette vertex (CSV).

Similarly FIG. 11C shows that a continuous umbral event
surface is also formed by higher-order wedges intersecting
first-order wedges at a compound silhouette vertex. In FIG.
11C, the higher-order pivoted wedge labeled
WEDGE_HIGH is formed on the visible portion (B1V) of the
first-order silhouette edge by the method described in con-
junction with FIG. 2B. Since WEDGE_HIGH is formed by an
adjusted or higher-order pivot on B1V, it intersects the com-
pound silhouette vertex labeled CSV, which is an endpoint of
B1V.

The first-order wedge WEDGE1U is also incident on the
point CSV. In fact, the intersection of WEDGE with the entire
first-order silhouette edge (shown as segments B1V+B10) is
the CSV. In this case, a continuous umbral surface is formed
between WEDGE1U (first-order wedge, pivoted to SVV1)
and WEDGE_HIGH (higher-order pivoted wedge, pivoted to
VSVV); by connecting these two pivoted wedges with a
swept wedge labeled SE-MV WC which is formed from the

10

15

20

25

30

35

40

45

50

55

60

65

102
swept supporting polygon constructed by sweeping from
SVV1 to VSVV through the CSV. All three of these wedges
intersect at the CSV.

Comparing the higher-order umbral event surface of FIG.
11C to the corresponding first-order umbral event surface
shown in FIG. 2B it is evident that the higher-order event
surface of FIG. 11C produces a larger umbral region, and
therefore a smaller visible region. When the higher-order
event surfaces are intersected with other mesh polygons and
used to determine which mesh polygons and/or fragments of
mesh polygons are conservatively visible from the viewcell,
the result will be a more precise visibility map and corre-
sponding PVS than if only first-order wedges are employed.
In this particular case the use of a higher-order wedge instead
of'the corresponding first-order wedge does not even increase
the geometric complexity of the resulting visibility map,
since in this case only one swept (SE-MV) wedge is used to
connect the two pivoted wedges, instead of two swept wedges
required in the first-order case.

FIG. 12 Detailed Description—Alternate Embodiment
Showing a Method of Constructing a Conservative, First-
Order, Linearized Umbral Discontinuity Mesh Using Pivot-
and-Sweep Construction of Wedges.

FIG. 12 is a flowchart showing a method of constructing a
conservative, linearized umbral discontinuity mesh using
pivot-and-sweep method of constructing first-order wedges.
According to some embodiments, the process illustrated in
FIG. 12 starts at step 1205, where the first-order silhouette
edges of all mesh triangles are identified. In some embodi-
ments, first-order silhouette edges can be identified using the
method detailed in FIG. 3.

Process flow proceeds to step 1210 to construct the initial
primary wedges incident on the first-order silhouette edges
using the pivot-and-sweep method detailed in FIG. 1 through
FIG. 6. In embodiments, the primary wedges are those
wedges constructed on encountered first-order silhouette
edges using the pivot and sweep method. On initial construc-
tion, in some embodiments, all wedges are initial wedges
which have not yet been further restricted by an on-wedge
visibility step.

In the present method, wedges are defined and constructed
differently than in prior-art discontinuity meshing methods.
In prior-art discontinuity meshing methods, planar wedges
are not defined in regions of the wedge for which the corre-
sponding viewcell supporting structure (vertex or edge) is
occluded from the supported mesh silhouette element (vertex
or edge). As a result, these prior-art methods compute exact
linear wedges which may not form continuous linear umbral
event surfaces because parts of the wedge are undefined
because of mesh polygons intersecting the corresponding
supporting polygon. These “gaps” in the linear umbral event
surface are evident when only planar event surfaces are con-
sidered, for example in the method of incomplete discontinu-
ity meshing (Heckbert 1992). These gaps actually correspond
to higher-order visibility event surfaces (often quadrics)
which involve edge-edge-edge events between the silhouette
edge, the intervening edge intersecting the supporting poly-
gon, and a viewcell edge. These gaps are actually filled by
higher-order event surfaces when complete discontinuity
meshing is employed.

In contrast, in the present method of wedge construction
according to some embodiments, a wedge is defined only by
the supported mesh silhouette structure and the supporting
viewcell structure: any intervening geometry does not affect
the structure of the wedge.

In the present method of first-order discontinuity meshing,
the gaps evident in the umbral boundary produced by the

US 9,171,396 B2

103

incomplete discontinuity meshing method (Heckbert 1992)
are filled by: 1) conservatively defining a wedge during con-
struction of the wedge by ignoring intervening geometry
between the wedge’s supported silhouette structure (edge or
vertex) and the supporting viewcell structure (i.e., ignoring
geometry intersecting the wedge’s supporting polygon) and,
2) constructing conservative, planar secondary SE-MV
wedges at the point of intersection of a wedge with (conser-
vatively) visible mesh silhouette edges. This point is called
the compound silhouette vertex (CSV). The result is a con-
tinuous, conservative, linear umbral boundary without the
“gaps” produced by incomplete discontinuity meshing meth-
ods which employ only exact linear event surfaces.

Process flow proceeds from step 1210 to step 1215 to place
the initial wedges constructed in step 1210 in a list called the
WEDGE_LIST.

Process flow proceeds to step 1220 to subject the first
wedge in the WEDGE_LIST to processing comprising the
steps 1225 through 1250. In embodiments, the WEDGE_1.-
IST is implemented using any desired data structure such as a
linked list or hash table.

Process flow proceeds to step 1225 to determine the on-
wedge visible intersections of the mesh triangles with the
wedge. The intersection of a mesh triangle and a wedge is a
line segment. Those segments (or portions thereof) which are
visible on the wedge are the on-wedge visible segments
(VIS_SEGS).

In the present method, the on-wedge visible segments are
determined, in some embodiments, by a 2D mesh traversal
method which determines the conservatively visible seg-
ments using an output sensitive 1-manifold (polyline) tra-
versal. This method is detailed in FIG. 14, FIG. 15, and FIG.
16 and related figures and discussed elsewhere in this speci-
fication. During the conduct of this method of on-wedge
visible segment determination, specific vertices where first-
order, from-viewcell silhouette edges intersect the wedge are
identified. These vertices are points of intersection between
the current wedge and the other wedge incident on the first-
order silhouette edge. This type of vertex is called a com-
pound silhouette vertex (CSV) and represents at t-vertices of
the silhouette contour, on which secondary conservative con-
necting SE-MV wedges are later constructed.

Process flow proceeds to step 1235 each VISIBLE_SEG is
stored as a bounding segment of the first-order umbral dis-
continuity mesh. These segments form boundary polylines of
the umbral discontinuity mesh that conservatively partition
the mesh into regions which are unoccluded from the viewcell
and regions which are occluded from the viewcell.

Process flow proceeds to step 1240, the pivot-and-sweep
method is used to construct one or more SE-MV wedges
incident on the wedge’s CSVS identified during the
on-wedge visibility step, 1225. As previously defined, each
CSV corresponds to the intersection of a current wedge and
another wedge which is supported on the from-viewcell, first-
order silhouette edge intersecting the current wedge. These
wedges intersect at the point of the CSV.

The sweep operation used to generate the SE-MV wedges
connecting the two component wedges intersecting at the
CSV is the same sweep operation described as part of the
pivot-and-sweep method, described in conjunction with FIG.
5A, FIG. 5B, and FIG. 6B. Sweeping occurs between the
supporting viewcell vertices (SVVs) corresponding to the
CSV’s two component wedges. In some embodiments, the
SVVs for each wedge are determined either at the time of
construction (SV-ME wedge). In other embodiments, the
SVVs for each wedge are determined during the on-wedge
visibility step 1225 (SE-MV wedge, see step 1553 FIG. 15).

20

25

30

40

45

104

If both wedges intersecting at the CSV pivot to the same
viewcell vertex, then the two wedges exactly intersect at their
edges and no new SE-MV wedge is constructed.

If the two wedges intersecting at a CSV are formed by
pivoting to two vertices of the same viewcell edge, then the
result of pivot-and-sweep construction on the CSV is a single
SE-MV wedge.

If the two intersecting wedges are SV-ME type then this
connecting SE-MV conservatively approximates the quadric
formed by the viewcell edge (connecting the two supporting
viewcell vertices) and the two SV-ME silhouette edges cor-
responding to the intersecting wedges of the CSV. The single
SE-MV wedge constructed on the CSV in this case conser-
vatively approximates the corresponding quadric formed by
the EEE event. In fact, the constructed SE-MV triangle can be
interpreted as a degenerate quadric having infinite pitch.

If the two wedges intersecting at the CSV are formed by
pivoting to vertices belonging to different viewcell edges then
the result of pivot-and-sweep construction on the CSV is an
edge-connected sequence SE-MV wedges.

If the two intersecting wedges are SV-ME type then these
connecting SE-MV wedges conservatively approximate the
quadrics formed by the viewcell edges and the two other
silhouette edges corresponding to the intersecting wedges of
the CSV. Once again, each of the SE-MV wedges can be
considered to be a corresponding degenerate quadric with
infinite pitch.

Process flow proceeds from step 1240 to step 1250 to add
all secondary initial wedges constructed in step 1240 to the
WEDGE_LIST. Which means that they will ultimately be
processed by step 1225 to find on-wedge visible segments. In
a subsequent step 1250 any SE-MV wedges constructed in
step 1240 are added to the WEDGE_LIST.

Process flow proceeds to decision step 1255 to determine if
all wedges in the WEDGE_LIST have been processed. If
wedges remain in the WEDGE_LIST, then process flow pro-
ceeds to step 1260 to process the next unprocessed wedge in
the WEDGE_LIST is selected in step 1260, where the process
flow returns to step 1225.

If, in decision step 1255, it is determined that all wedges in
the WEDGE_LIST have been processed, then process flow
continues to step 1265 to determine the visibility of each
region of the first-order discontinuity mesh by testing the
from-viewcell visibility of a single point in each region. In
some embodiments, the from-viewcell visibility of each
tested point is determined using the point-occlusion method
shown in FIG. 24B. This test, which is described in detail in
conjunction with FIG. 24B and related figures, is based on a
modified point-in-polyhedron test. It is important that this test
employs the same conservative visibility event surfaces
(wedges) that were used to construct the conservative.

Process flow proceeds to step 1270, where the first-order

PVS is the set of mesh triangles and fragments of mesh
triangles not inside umbral (occluded) regions of the conser-
vative first-order umbral discontinuity mesh.
Comparison of Non-Output-Sensitive Method of Conserva-
tive Linearized Discontinuity Mesh Construction with Out-
put-Sensitive Method of Conservative Linearized Visibility
Map Construction Using 3D and 2D Mesh Traversal

As detailed in FIG. 12, the conservative, linearized umbral
discontinuity mesh can be constructed using the general
prior-art approach to constructing discontinuity meshes. In
this prior art approach, a wedge is constructed on each rel-
evant silhouette edge, even those that are completely
occluded from the source (viewcell in the present applica-
tion). Then each wedge, including those constructed on com-
pletely occluded silhouette edges, is intersected with all

US 9,171,396 B2

105

potentially intersecting mesh triangles and the visible seg-
ments of mesh triangles on each wedge are later determined
as a post-process.

In contrast, the method of constructing from-viewcell con-

servative linearized umbral visibility maps using 3D mesh
traversal (FIG. 20A and related figures), used with 2D mesh
traversal for on-wedge visibility (FIG. 15 and related figures),
provides a more efficient, output-sensitive method of deter-
mining from-viewcell visibility. This method exploits the
intrinsic connectedness and occlusion coherence of manifold
meshes and solves the visibility problem in a front-to-back
order. This method interleaves the processes of visible silhou-
ette edge determination and wedge construction on the visible
silhouette edges to achieve output-sensitive performance that
is relatively independent of the depth complexity of the
model.

In general, an output-sensitive process has a computational
cost thatis determined primarily by the size of the algorithm’s
output, as opposed to the size of its input. Since in realistic
modeled environments, the size of the visible data set from
any view region (output) is typically much smaller than the
size of the entire model (input), an output-sensitive from
region visibility precomputation process is advantageous.

The differences between the two methods of determining
from-region visibility using conservative, linearized, umbral
event surfaces, the output-insensitive method of FIG. 12, and
the output-sensitive 2D/3D mesh traversal method (FIG. 20
and related figures) are summarized in Table Va.

TABLE Va

Comparison of Non-Output-Sensitive Method of CLUDM Construction
With Output-Sensitive Method of CLUVM Construction

Conservative Linearized
Umbral Visibility Map
(CLUVM)

Output Sensitive Method
of FIG. 20 (3D Traversal)
& FIG. 15 (2D Traversal)

Conservative
Linearized Umbral
Discontinuity Mesh
(CLUDM)
Non-Output-Sensitive
Method of FIG. 12

Wedge Construction 1. Intersect Wedge & Output-Sensitive 2D Mesh

All Potentially Traversal for On-Wedge
Intersecting Mesh Visibility
Triangles
2. 2D visibility
post-process to
Find Visible Segments
Wedges Generated ~ Visible + Occluded Visible
Output Sensitive No Yes

Number of Cells in
Region

M?*N?* g2 * 8, .2
(Discontinuity Mesh)

2 % N2 2 2
Mp” * N°* 857 * Spsnas

Where the following terms are used in the table and subse-
quent equations:

M=number of polygons in the model

N=number of edges in a viewcell

S=number of first-order silhouette edges in environment

Snan~umber of first-order silhouette edges in a shaft
formed between a single first-order silhouette edge and the
viewcell

M, =number of visible polygons in the model

S,=number of visible first-order silhouette edges in envi-
ronment

10

15

20

25

30

35

40

45

50

55

60

65

106

S ysnap—number of visible first-order silhouette edges in a
shaft formed between a single first-order silhouette edge and
the viewcell

V, =number of vertices of intersection between all poly-
gons and a single wedge

M, =number of mesh polygons intersecting a wedge

V,,,—number of visible (from point or from edge) silhou-
ette vertices on a wedge

Seg,, =number of on-wedge visible segments of intersec-
tion between mesh polygons and a wedge

The preceding table emphasizes that for the 2D/3D mesh
traversal method, visible silhouette edges are identified dur-
ing the front-to-back traversal of the manifolds. Conse-
quently, only those wedges supported by visible silhouette
edge segments are constructed. This results in a more output-
sensitive implementation.

Comparison of Prior-Art Discontinuity Mesh Methods and
the Present Method of Discontinuity Meshing Using Conser-
vative Linearized Umbral Event Surfaces

The prior-art method of discontinuity meshing was dis-
cussed in the Description of Background section of this speci-
fication. Discontinuity meshing methods construct both
umbral and penumbral visibility event surfaces and determine
their on-wedge visible intersection with mesh polygons.
These intersections re-partition the mesh polygons such that
in each face or “region” of the discontinuity mesh the view of
the source (the “backprojection instance™) is topologically
equivalent. The goal of prior-art discontinuity meshing meth-
ods is primarily to identify illumination discontinuities that
occur in the penumbra region of an area light source.

The present method of from-region visibility precomputa-
tion, in some embodiments, does not employ penumbral vis-
ibility event surfaces but instead uses only conservative
umbral visibility event surfaces to identify mesh polygon
fragments that are conservatively visible from a viewcell.
These event surfaces can be employed to construct a conser-
vative umbral discontinuity mesh as described in FIG. 12
(non-output-sensitive discontinuity mesh construction) and
FIG. 19, FIG. 20, FI1G. 21 and related figures (output-sensitive
from-viewcell visibility map construction). Alternatively, the
conservative umbral wedges can be intersected with each
other to form umbral boundary polygons (UBPs) as described
in FIG. 26.

Table Vb presents a comparison of the method of conser-
vative linearized umbral visibility map (shown in FIG. 20 and
related figures) with prior-art discontinuity meshing meth-
ods.

The row labeled “Wedges Generated” illustrates that the
present method of 3D mesh traversal (FIG. 20 and related
figures) using 2D mesh traversal (FIG. 15 and related figures)
together comprise a from-region visibility method which is
relatively output sensitive, as visibility event surfaces are
generated only on visible (unoccluded) (first-order) silhou-
ette edges. This contrasts to prior-art discontinuity mesh
methods in which event surfaces are generated on all (general
from-region) silhouette edges.

107

US 9,171,396 B2

TABLE Vb

Comparison of Conservative Linearized Umbral Visibility Map (CLUVM)
With Prior-Art Methods of Incomplete and Complete Discontinuity Meshing

Conservative
Linearized Umbral
Visibility Map

Incomplete
Discontinuity Mesh
(Prior Art)

Complete
Discontinuity Mesh
(Prior Art)

Wedge Type

Event Surfaces

Silhouette Edges

Planar Wedge
Structure

Wedge Construction

Wedges Generated
Umbral Boundary

Precision of Umbral

Planar Exact and Planar
Conservative
Umbral

1. First-Order Wedges-
Only First-Order Edges
2. Higher-Order-May
Include other General
From-Region Silhouette
Edges

Planar Conservatively
Assumes Entire
Supported Silhouette
Element is Visible from
Entire Supporting
Viewcell Element

1. 3D manifold traversal
identifies unoccluded
silhouette edges.

2. 2D manifold traversal
to solve on-wedge
visibility

Visible
Continuous

1. First-Order-

Planar Exact

Umbral, Extremal
Penumbra, and Any
Other Penumbral
Surface intersecting
Viewcell

All From-Region
Silhouette Edges

Wedge Not Defined on
Segments of Supported
Silhouette Element That
Are Occluded from
Supporting Viewcell
Element

1. Intersect Wedge &
All Potentially
Intersecting Mesh
Triangles

2. 2D visibility post-
process to Find Visible
Segments

Visible + Occluded
Discontinuous,
Incomplete
Incomplete

Planar Exact & Quadric
Exact

Umbral, Extremal
Penumbra, and Any
Other Penubral Surface
intersecting Viewcell

All From-Region
Silhouette Edges

Planar Wedge Not
Defined on Segments of
Supported Silhouette
Element That Are
Occluded from
Supporting Viewcell
Element

1. Intersect Wedge &
All Potentially
Intersecting Mesh
Triangles

2. 2D visibility post-
process to Find Visible
Segments

Visible + Occluded
Continuous Only With
Addition of Quadrics
Exact

108

Conservative

2. Higher-Order
Converges on Exact
Output-Sensitive

Boundary

Performance Non-Output-Sensitive

Non-Output-Sensitive

To summarize, the present method of first-order disconti-
nuity meshing eliminates the gaps found in the umbral bound-
ary produced by prior-art incomplete discontinuity meshing
methods that consider only linear vertex-edge visibility event
surfaces. The first-order method fills these gaps by: 1) con-
servatively extending the visible portions of the wedge by
ignoring on-wedge occlusion in the corresponding support-
ing polygon and, 2) constructing conservative, planar SE-MV
wedges at the points of intersection of a wedge with the
(conservatively) visible mesh silhouette edges. These points
of intersection of wedges are the CSVs and the construction
of SE-MV wedges on these points using the sweep method
results in a continuous, linear umbral boundary in the corre-
sponding discontinuity mesh. This boundary is exact except
in the gap regions, where it is approximate but always con-
servative.

The gaps in the umbral boundary that occur in prior-art
methods of incomplete discontinuity meshing actually corre-
spond to quadric umbral event surfaces which are represented
in complete discontinuity meshing methods. However the use
of'quadric surfaces substantially increases the complexity the
implementation.

Unlike the linear event surfaces used in the prior-art
method of incomplete discontinuity meshing, the conserva-
tive linearized umbral event surfaces employed in the method
of FIG. 12 form a continuous umbral surface which allows the
determination of occluded and conservatively visible poly-
gon mesh fragments.

40

45

50

55

60

65

As shown later in this specification, embodiments also
include a technique of higher-order backprojection to adap-
tively refine the precision of the conservative linearized event
surfaces in these gap regions. Using this refinement, and only
planar wedges, the method can construct conservative umbral
event surfaces in the gap regions that converge on the exact
quadric event surfaces to within a specified error tolerance.

The use of conservative linearized umbral event surfaces
greatly simplifies any implementation compared to prior-art
complete discontinuity mesh methods which require quad-
rics. However, it is interesting to note that while the imple-
mentation is simplified, the asymptotic complexity of the
linearized umbral surface is comparable to the complexity of
the complete discontinuity mesh method using only S-EEE
quadrics when viewed in terms of the actual number of event
surfaces required.

The Table VIa shows the upper bounds of the number of
umbral event surfaces and discontinuity mesh boundaries
generated by first-order method compared to the upper
bounds on the number of S-EEE surfaces (quadrics) that
would be generated in a complete discontinuity mesh imple-
mentation assuming that quadrics were generated only on
first-order silhouette edges.

M=number of polygons in the model

N=number of edges in a viewcell

S=number of first-order silhouette edges in environment

Seuap~number of first-order silhouette edges in a shaft

formed between a single first-order silhouette edge and
the viewcell

US 9,171,396 B2

109
TABLE VIa

110

Estimate of Number of Event Surfaces and Cells/Regions for Discontinuity Meshes Using
Various Visibility Propagation Models Assuming Non-Output Sensitive Construction

Number of Event
Surfaces Generated

Visibility Propagation

Model Intersections

Event Surfaces x Face

Number of Cells in
Discontinuity Mesh

First-Order Pivot &
Sweep

O(N * S * Sg0) - The
number of possible S-
EEE events formed
between N viewcell

edges and S silhouette
edges. SE-MV wedges
on CSVs.

O(N * S * Sg0) - S-EEE
events between N
viewcell edges and S
silhouette edges.
Quadrics

O(N * 8 * S, - S-EEE
events between N
viewcell edges and S
silhouette edges.
Quadrics

M*N*8*Sg.x

Complete Discontinuity
Mesh Method using S-
EEE quadrics

M*N*8*Sg.x

Complete Discontinuity
Mesh Using NonS-EEE
Quadrics

M*N*S*S*Sg, 2

M2 # N2 * g2 * SShaﬁ2

M?*N?* g2 * 8, .2

M2 # N2 * g2 * SShaﬁ4

Teller Conservative - O(N * S) No new event M*N*S M2 * N2 * §2
specified by Teller for surfaces at compound
simple silhouette silhouette vertices.
vertices but extended in Existing SV-ME
the present method to wedges conservatively
first-order SV-ME extended to intersection.
wedges intersecting at
CSVs.
The last row of the table shows the expected complexity of 30 would be reduced by one order of magnitude and the com-

the event surfaces and discontinuity mesh boundaries pro-
duced if Teller’s linearizing method of extending the plane of
adjacent SV-ME wedges to intersection were employed at the
compound first-order silhouette vertices (CSVs). Unlike the
first-order pivot and sweep method and the S-EEE method
employing quadrics, the method of extending SV-ME wedges
to intersection would introduce no new event surfaces at the
CSVs and therefore, produce fewer event surfaces. These
extended event surfaces are generally less precise than the
corresponding first-order SE-MV wedges (especially close to
the viewcell). Consequently, they would tend to actually
intersect a greater number of model polygons and signifi-
cantly underestimate the umbral regions if used close to the
viewcell. This fact is used in the present invention which
employs a technique of using first-order SE-MV (generated
by pivot and sweep) wedges at CSVs close to the viewcell.
Farther from the viewcell, SV-ME wedges intersecting at
CSVs are extended to intersection. The resulting extended
wedges are not as imprecise at greater distances from the
viewcell. This technique maintains the conservativeness of
the umbral event surfaces while reducing the number of event
surfaces required to maintain a desired precision of the result-
ing umbral discontinuity mesh.

The third row of Table VIa shows that the complete dis-
continuity mesh including Non-S-EEE event surfaces has a
considerably higher complexity.

The conservative estimates of the number of event surfaces
for the first-order visibility propagation shown in Table VIa
conservatively assumes that the number of silhouette edges is
a linear function of the number of polygons in the model. In
fact, the first-order model generates event surfaces only on
first-order silhouette edges, which are considerably less
numerous than general from-viewcell silhouette edges
employed by the complete discontinuity meshing methods.
For detailed meshes the number of silhouette edges tends to
approach the square root of the number of polygons. If this
assumption were made, then the number of event surfaces

40

45

55

plexity of the discontinuity mesh arrangement would be
reduced by two orders of magnitude. This assumption is the
basis for the estimate of the complexity of the first-order
visibility map given in Table I

Of course, also contributing to the complexity of the com-
plete discontinuity mesh is the fact that in prior-art (non-
output-sensitive) methods of construction, all of the visibility
event surfaces are constructed even though many of these are
actually completely inside the from-region (e.g., from-view-
cell) umbra and hence do not contribute to the actual from-
region umbral or penumbral boundaries. In contrast, the out-
put-sensitive method of constructing CLUVM generates a
first-order umbral event surfaces which are extremal in the
sense that no other (first-order) visible umbral event surfaces
are contained within the CLUES, although the CLUES can be
refined by backprojection to account for higher-order visibil-
ity effects.

Once again, Table VIa assumes non-output-sensitive con-
struction of the discontinuity meshes. Elsewhere in this speci-
fication, it is shown that output-sensitive construction of the
corresponding visibility map can considerably reduce the
number of event surfaces constructed and the corresponding
complexity of the arrangement of regions.

From-region visibility methods only compute, in some
embodiments, the exact umbral boundary event surfaces or a
conservative approximation of these surfaces. In contrast,
discontinuity mesh methods must generate all event surfaces
(umbral and penumbral), which intersect the polygon mesh
such that the mesh is repartitioned into discontinuity mesh
faces within which the topological view of the source region
is uniform. Consequently, the (exact or conservative) umbral
boundary surfaces are generally a small subset of the visibil-
ity event surfaces computed in discontinuity meshing meth-
ods.

The present methods of computing from-region visibility
by constructing umbral discontinuity meshes, from-viewcell
visibility maps, or polyhedral aggregate umbrae makes intrin-

US 9,171,396 B2

111

sic use of polygon orientation to construct only umbral event
surfaces (either first-order or exact) without the need for a
containment function test. In some embodiments, these
umbral event surfaces are a small subset of the complete set of
visibility event surfaces defining a discontinuity mesh. Con-
sequently, the present methods are a more efficient method of
computing from-region visibility than post-processing the
complete discontinuity mesh to identify umbral boundaries.

FIG. 13 is a flowchart showing the process of identifying
and resolving overlap cycles during 3D mesh traversal.

The output-sensitive method of from-viewcell visibility
map construction employing 3D mesh traversal (shown in
FIGS. 19-21) may encounter polygon overlap cycles (for
example in step 1935 of FIG. 19, and step 2015 of FIG. 20A).
Such polygon overlap cycles may also be encountered in the
Weiler-Atherton algorithm which is a prior-art method of
from-point visibility determination.

Because the mesh traversal method shown in FIGS. 19-21
is biased toward jumping to closer, potentially occluding
elements, it is susceptible to an infinite loop that can be
caused by the cyclic partial occlusion of mesh elements. For
example, consider the case where both potential occludee and
potential occluder mesh elements are defined as polygon
clusters contained in bounding boxes. It is clear that three
(3D) bounding boxes may be arranged in 3-space such that
the boxes partially occlude each other in a cyclic fashion. For
example consider three boxes, a box A is partially occluded
by abox B. Box B is partially occluded by a third box C. If box
C is partially occluded by box A, then the three boxes form a
cycle of occlusion. If the mesh traversal process employed
these bounding box elements in the shaft tests, then an infinite
cycle would result between steps 2005, 2010, and 2030 in
FIG. 20A.

Two techniques can be employed, in embodiments, to
eliminate infinite cycles caused by cyclic occlusion of mesh
elements. In one method, the size of the element being used
for the shaft tests is decreased. This can be accomplished
naturally using hierarchical bounding boxes by using child
boxes lower in the hierarchy. Smaller mesh elements are less
likely to result in cyclic occlusion. To manage cycles, ele-
ments are dynamically redefined from larger to smaller clus-
ters and even to individual triangles. In some embodiments,
this technique does not eliminate cyclic occlusion in all cases,
since even three individual triangles can cause an occlusion
cycle.

In such cases, a second technique effectively eliminates an
occlusion cycle. In this technique, the mesh elements are
defined as triangles and the overlap relationships between
triangles is maintained as a directed graph. Before any jump
to a closer triangle, the related part of this directed graph is
checked for cycles. This check can employ Tarjan’s algorithm
or other O(n) time algorithms for identifying cycles (strongly
connected components) in a directed graph. Once a triangle
overlap cycle is identified, the cycle can be broken by iden-
tifying all triangles in the triangle-viewcell shaft of the
offending triangle causing the cycle (the root triangle of the
cycle). All other triangles in this shaft are intersected with the
shaft. This intersection subdivides the triangles into compo-
nents that are completely inside the shaft and components that
are completely outside the shaft. The traversal is then reiniti-
ated using these subdivided triangles, which cannot form a
cycle with the offending triangle. This is because any triangle
forming a cycle with the offending triangle must be both
inside and outside the shaft. This technique can also be
employed to resolve occlusion cycles on mesh elements other
than individual triangles.

5

10

15

20

25

30

35

40

45

50

55

60

65

112

In another technique, to eliminate cycles, the latter
approach of trimming triangles in the shaft of other triangles
is always employed immediately. This eliminates the need to
construct and maintain a directed graph storing overlap rela-
tionships. However, it can result in unnecessary intersection/
trimming calculations, e.g. where no cycles exist.

Turning now to FIG. 13, FIG. 13 is similar to FIG. 20A, the
main part of the 3D mesh traversal algorithm for output-
sensitive construction of from-region visibility map. FIG. 13
supplements FIG. 20 by showing the steps of the 3D mesh
traversal process in which polygon overlap cycles may be
encountered, and adding steps to detect and resolve such
overlaps.

In some embodiments, the process illustrated in FIG. 13
starts at step 1305, where a mesh triangle is encountered in the
main process of the 3D mesh traversal (step is same as 2005
of FIG. 20A).

Process flow proceeds to decision step 1310 to determine if
there are any untraversed triangles in a shaft formed by the
current triangle and the viewcell. This is the same as step 2010
in FIG. 20A.

If, in decision step 1310, it is determined that an un-tra-
versed triangle exists within the shaft formed by the viewcell
and the current triangle, then process flow proceeds to step
1330 to insert the overlying triangle into a directed graph
which represents the overlap relationships among the tri-
angles. Step 1330 and subsequent steps are performed in
addition to the corresponding step 2030 in FIG. 20. In step
1330, the.

Process flow proceeds to step 1335 to determine if the
triangles form a cycle in the directed graph representing the
overlap relationships, then process flow proceeds to step
1340. In some embodiments, the check for cyclicity in a
directed graph can be performed in linear time using prior-art
algorithms. The presence of a cycle in the graph indicates
cyclic overlap involving the current triangle and the overlying
triangle in the shaft.

In step 1340, the overlying triangle is trimmed into two
components: one component completely inside the shaft and
another component completely outside the shaft. This effec-
tively eliminates any potential overlap cycle involving the
original overlying triangle.

Following step 1340, process flow proceeds to step 1345,
where the 3D mesh traversal is jumped to the overlying com-
ponent triangle. This is identical to the step 2030 in FIG. 20A.

If, in decision step 1335, it is determined that the overlying
triangle does not form a cycle with the current triangle, then
process flow proceeds directly to step 1345.

If, in decision step 1310, it is determined that there are no
un-traversed triangles in the triangle-viewcell shaft, then pro-
cess flow proceeds to step 1315. Step 1315 and subsequent
steps are identical to the corresponding steps of FIG. 20A.

As previously described, cycles are identified using poly-
gon-viewcell shafts. Care must be taken to construct shafts
between the polygon and the portion of the viewcell on the
frontfacing side of the plane containing the polygon. In some
embodiments, for polygons lying in a plane that bisects the
viewcell, only the portion of the viewcell on the frontfacing
side of the plane is used. Polygon-viewcell shafts in the
present method are defined in this way.

If, in decision step 1310, it is determined that no untra-
versed triangles exist within the shaft formed by the current
triangle and the viewcell, then it is not necessary to check for
cyclic overlap and process flow proceeds to step 1315. Deci-
sion step 1315 is identical to decision step 2015 of FIG. 20A
when the traversal is applied to construct a from-region vis-
ibility map as shown in FIG. 20A. In this case Step 1318

US 9,171,396 B2

113
labeled PROCESS INTERSECTION corresponds to step
2035 of FIG. 20A, where the traversal is interrupted at an
occlusion boundary. Step 1320 in FIG. 13 is identical to step
2020 of FIG. 20A. Step 1322 labeled PROCESS EDGE,
corresponds to steps 2040 through 2046 in FIG. 20A.

Both the Weiler-Atherton algorithm and present method of
3D mesh traversal (used to construct either a visibility map, a
discontinuity mesh, or PAU) employ a check for cyclic over-
lap in some embodiments.

The Weiler-Atherton algorithm is an image-space, object
precision method of from-point visibility determination that
has a computational cost which is (except for regions of a

10

114
is essentially a type of shaft test, with the shaft formed
between the current polygon and the viewcell. Such shaft
tests can be accelerated using hierarchical spatial subdivision
or bounding volumes in a manner similar to the techniques
used to accelerate view frustum culling. Using this approach,
the cost of shaft testing tends to O(log N) in the number of
potentially occluding elements, N. For N current polygons to
be tested the overall cost is N log N. The strict front-to-back
order insures that the number of current polygons to be tested,
N, is close to the number of visible polygons, thus producing

output sensitivity.

TABLE VIb

3D/2DManifold Traversal
(From-Region or From-Point)

Weiler-Atherton Algorithm
(From-Point)

Organization

Lateral Order Of Polygon

Processing

Depth Order of Polygon

Processing
Process Overlying
Polygons

Process Underlying
Polygons

Superfluous Event

Surface x Mesh Polygon

Intersection Tests
Mesh Self-Occlusion
Tests

Precision/Solution Space

Wedge/UBP generated only at (first-
order) silhouette edges of manifold
silhouette contour.

Breadth-First Manifold Traversal

Enforced dept-first processing.
Process overlying first.

1. Process all, overlying have priority
2. Generate event boundary (Wedge or
UBP) only at silhouette edge

Only if current polygon contains
silhouette edge

None, all Wedges/UBPs are generated
only at silhouette edges

Performed only at silhouette edges/
visibility events where self occlusion is
possible

Object/Object

(Not projective)

Polygon x Polygon Clip test at
each polygon edge (except
polygons of convex polyhedron
may be clustered)

None

Process underlying first.

1. Process all, no priority

2. Generate Event boundary for
each overlying polygon unless it
member of convex group with
current polygon

Process all (unless underlying
polygon is member of convex
group with current polygon)
Yes, many “event surfaces”
(clip edges) generated at non-
silhouette edges

Performed at many non-
silhouette edges where self
occlusion is not possible.
Object/Image

(Projective)

mesh that are convex) generally not output-sensitive with
respect to the depth complexity of the scene.

The present method of 3D mesh traversal (FIG. 20 and
related figures) when used in combination with 2D mesh
traversal (FIG. 15 and related figures) is a method of from-
region visibility computation that is generally output-sensi-
tive with respect to the depth complexity of the visibility map.
(The 3D/2D mesh traversal method can also be applied to the
from-point visibility problem by simply using a viewpoint as
a degenerate viewcell).

Table VIb illustrates some of the differences between the
Weiler-Atherton algorithm and the present method using
3D/2D manifold mesh traversal. The first row of the table
emphasizes that the Weiler-Atherton algorithm effectively
generates visibility event surfaces (clipping edges) at every
edge of every polygon, except for convex occluders where
non-silhouette edges can be ignored. In contrast, the 3D/2D
manifold mesh traversal method exploits the intrinsic occlu-
sion coherence of the manifold by generating visibility event
surfaces only at silhouette edges.

Moreover, by enforcing a front-to-back depth order and by
interleaving the traversal of visible polygons with the con-
struction of occlusion boundaries, the 3D/2D mesh traversal
method achieves a more output-sensitive performance profile
than is possible with Weiler-Atherton.

The cost of enforcing the strict front-to-back traversal for
the 3D/2D mesh traversal algorithm is the cost of testing for
polygons which potentially occlude the current polygon. This

40

45

50

55

60

65

Mesh Traversal Implementation: 2D Mesh Traversal (FIG.
14, FIG. 15, FIG. 16)

Referring now to FIG. 14 and the related FIG. 15 and FIG.
16, the 2D mesh traversal process (traversal of 1-manifolds)
for constructing the on wedge-visible 2D visibility maps is
described

The 3D mesh traversal process (described elsewhere in this
specification in conjunction with FIG. 19, FIG. 20, and
related FIGS.) solves the 3D, from-viewcell visibility prob-
lem. In some embodiments, the output of the 3D mesh tra-
versal process is a conservative linearized umbral visibility
map comprised of from-viewcell unoccluded polygon frag-
ments identifying by intersecting conservative linearized
umbral event surfaces (CLUES) or wedges, with mesh poly-
gons and determining if a wedge intersection is actually a
from-viewcell occlusion boundary.

As described in some embodiments, the CLUES can also
be intersected with mesh polygons without determining if the
intersection is a from-viewcell occlusion boundary. The
resulting partitioning of the mesh polygons in these embodi-
ments is a type of discontinuity mesh that must later be
post-processed to determine if the mesh elements are visible
from the viewcell. By comparison, the 2D mesh traversal
process solves a 2D visibility problem: on-wedge visibility,
which is similar to the on-wedge visibility problem found in
prior-art discontinuity meshing methods. In prior-art meth-
ods, the on-wedge visibility problem is solved in a simple but
inefficient way: intersect triangles with the wedge and then

US 9,171,396 B2

115

determine the visible segments using 2D Weiler-Atherton
algorithm (which is not output-sensitive). By exploiting the
intrinsic visibility coherence of 1-manifolds, the present
method of 2D mesh traversal solves the same problem in a
more efficient, output sensitive way.

On-wedge visibility amounts to finding visible segments
on a wedge, from an element (viewcell vertex or edge, or
inside corner mesh silhouette vertex) and through a polygon
mesh element (edge or vertex). In some embodiments, the
wedges are conservative linearized umbral event surface
(CLUES).

If the wedge is formed by a viewcell vertex and a mesh
silhouette edge, the wedge is called a SV-ME wedge. The
SV-ME wedge presents a from-point on-wedge visibility
problem. If the wedge is formed by a viewcell edge and a
mesh vertex it is called a SE-MV wedge. In some embodi-
ments, this type of wedge also presents a from-point, on-
wedge visibility problem, since the visibility is solved from
the point of view of the mesh silhouette vertex in the direction
away from the viewcell.

A third type of wedge (SE-ME) is formed by a viewcell
edge and a mesh silhouette edge in the special case in which
the two edges are parallel. In this case, the pivoting process to
construct the umbral wedge does not encounter a unique
supporting viewcell vertex but instead a viewcell edge. Such
wedges are not identified in many prior-art discontinuity
meshing methods, but certainly can exist especially in archi-
tectural environments (in which many edges tend to be par-
allel or perpendicular to a ground plane) if the viewcell(s)
happen to be aligned to the world axes.

Unlike the other two types of wedges, the SE-ME wedge
presents a from-region, on-wedge visibility problem:
on-wedge visibility from the supporting viewcell edge. In
some embodiments, SE-ME wedges are eliminated by arepo-
sitioning of the viewcells in the general position or by treating
them as pairs of SV-ME wedges specially connected and with
a lexicographical ordering.

In the present method, SE-ME wedges and the problem of
on-wedge, from line-segment visibility is addressed directly
by the 2D manifold traversal method, which solves both
from-point visibility (for SV-ME, and SE-MV wedges) and
from line-segment visibility (SE-ME wedges).

The from-line segment case is intrinsically more complex
than the from-point case, since from-region visibility prob-
lems, even in 2D (on-wedge visibility) can involve higher-
order visibility event surfaces as suggested by Koltun et al.

The present method of 2D manifold traversal solves the
on-wedge visibility problem for both the from-point and
from-edge case. For the from-edge case (SE-ME wedges), the
method employs, in some embodiments, only first-order
umbral event surfaces, called wedge lines (WLs), or higher-
order event surfaces called umbral boundary lines (UBLs).
FIG. 14, FIG. 15, and FIG. 16 show related flowcharts com-
prising the method of 2D manifold traversal for solving the
problem of on-wedge visibility for both from-point wedges
(SV-ME wedge in which the supporting viewcell element is a
vertex) and from-edge wedges (SE-ME in which the support-
ing viewcell element is an edge) cases. The SE-MV case is
identical to the from-point, SV-ME case except that the “cle-
ment” from which visibility is solved is not actually a view-
cell vertex but an inside corner mesh silhouette vertex.

FIG. 17 and FIG. 18 are flowcharts showing the method of
“adjusting” the first-order WLS to conservatively approxi-
mate higher-order UBLs using backprojection to increase the
precision of the on-wedge visibility solution. The details of
FIG. 17 and FIG. 18 are presented in a subsequent section of
this specification.

20

30

35

40

45

55

116

The output of the 2D traversal process, as applied to the
problem of determining on-wedge-visible mesh triangle
intersection, is a conservative 2D visibility map comprised of
on-wedge visible mesh polyline segments and conservative
one degree of freedom visibility event structures called
wedge lines. The polylines are the 1-manifolds being tra-
versed. Segments of the polylines correspond to the
on-wedge visible intersection of a mesh triangle with the
wedge. In the 2D manifold traversal method, individual
1-manifolds may be “fused” to other 1-manifolds by the WLs,
creating polyline aggregate umbrae (PLAU) and thus realiz-
ing occluder fusion on the plane.

The flowchart shown in FIG. 14 shows the process of
initiating, reinitiating, and halting the main 2D traversal pro-
cess which is shown in FIG. 15., and which is described in
detail in a subsequent part of this specification.

According to some embodiments, the process illustrated in
FIG. 14 starts at step 1405, where the selection of a “seed”
segment to initiate the 2D mesh traversal process for a single
wedge is shown.

In one embodiment of the 2D traversal method, traversal
begins with a visible segment formed by a mesh triangle that
also intersects a wedge that is connected (adjacent) to the
current wedge being processed. In this approach, a mesh
triangle that is part of the polyline aggregate umbra (PLAU)
of'an adjacent wedge is used to initiate the 2D traversal on the
current wedge. Since this mesh polygon corresponds to an
intersecting visible segment that was closest to the viewcell
for the adjacent wedge, it is likely to be a closest segment for
the current wedge. Initiating the traversal using a known
adjacent, closest intersecting element improves the perfor-
mance of the process. Segments connected to this initial seg-
ment form the 2D seed mesh and are readily identified by
determining the intersection of triangles adjacent to the seed
triangle which also intersect the wedge.

Process flow proceeds to step 1410, to identify the contain-
ment points of the 2D seed mesh by the intersection of the
wedge lateral boundaries with the 2D seed mesh.

Once a seed 2D mesh and containment points on the seed
mesh are identified, then process flow proceeds to step 1415
to call the main process of the 2D mesh traversal. The main
2D mesh traversal process is shown in FIG. 15. In some
embodiments, the main 2D manifold traversal process shown
in FIG. 15 is initiated using the seed 2D mesh triangle/seg-
ment selected in step 1405 of FIG. 14. Moreover, the main
process of 2D mesh traversal shown in FIG. 15 can be sus-
pended at specific segments of the 2D mesh (at step 1530).
The process shown in FIG. 14 determines whether any sus-
pended traversals remain in the main 2D manifold traversal
process (step 1420), and whether the main process of the 2D
mesh traversal should be reinitiated on these suspended seg-
ments (steps 1430 and later).

If, in decision step 1420, it is determined that there are no
existing segments on which the main part of the 2D mesh
traversal has been suspended, then process flow proceeds to
step 1425 in which the 2D mesh traversal for the wedge is
terminated, thereby completing the construction of the 2D
on-wedge visibility map.

If, in decision step 1420, it is determined that there exist
segments of the 2D mesh for which the main 2D mesh tra-
versal has been suspended (in step 1530 of FIG. 15), then
process flow proceeds to decision step 1430 to determine if
any triangles exist in the shaft formed by the suspended
segment (SEG) and the viewcell element (VCE), which is
either a viewcell vertex (SV-ME wedge) or a viewcell edge
(SE-ME wedge). Alternatively, if the wedge is a SE-MV type
then the on-wedge visibility is actually solved from the inside

US 9,171,396 B2

117

corner mesh silhouette vertex which is treated as “VCE”
[point] for the purposes of this algorithm.

If, in decision step 1430, it is determined that there are no
triangles in the shaft between the seg and the VCE, then
processing proceeds to step 1455 to construct containment
points on the 2D mesh (polyline) formed by the segments
connected to the current suspended segment.

Process flow proceeds to step 1460, where the 2D mesh
traversal is reinitiated on the previously suspended segment.

I, in decision step 1430, it is determined that there are
triangles in the shaft between the seg and the VCE, then
process flow proceeds to step 1435 to determine if any tri-
angles/segments in the SEG-VCE shaft are untraversed.

If, in decision step 1435, it is determined that untraversed
triangles/segments exist in the SEG-VCE shaft, then process
flow proceeds to step 1440, where the 2D mesh traversal is
“jumped” or restarted on the closer untraversed triangles/
segments in the SEG-VCE shatft. This step (which also occurs
in step 1530 of the main 2D traversal process shown in FIG.
15) insures that all potentially occluding triangles/segments
have been processed before the traversal is continued and
before a decision to stop the traversal (because the suspended
segment is completely occluded from the VCE) is made.

If, in decision step 1435, it is determined that no untra-
versed triangles exist in the SEG-VCE shaft then process flow
proceeds to step 1445 to determine if a point on the current
(suspended) segment is inside any polyline aggregate umbrae
(PLAU), which represents one or more polygonal subregions
of the wedge that are occluded from the wedge’s VCE (or
inside corner silhouette vertex in the case of a SE-MV
wedge). In some embodiments, this test employs a 2D version
of the modified point-in-polyhedron test shown in FIG. 25.
This modified point in polyhedron test uses first-order event
surfaces (first-order wedges), or the corresponding wedge
lines (WLS) in the 2D case; and, optionally, higher-order
umbral boundary polygons (UBPs), or the corresponding
umbral boundary lines (UBLS) in the 2D case. This test
allows an implicit solution to the point-in-polyhedron or
point-in-polygon problem without necessarily constructing
the entire polyhedron/polygon.

If, in decision step 1445, it is determined that a point on the
suspended segment is inside a PLAU then the process flow
proceeds to step 1450, where the traversal is not reinitiated on
the suspended segment and the suspended segment is no
longer labeled as suspended.

If, in decision step 1445, itis determined that the suspended
segment is not inside any PLAU, then processing proceeds to
step 1455, where the containment points of the associated 2D
mesh are constructed and the traversal reinitiated as previ-
ously described.
2D Mesh Traversal Implementation: Main Process of 2D
Traversal (FIG. 15)

As previously described, the process shown in FIG. 14
works to control the initiation, re-initiation, and termination
of the main process of the 2D mesh traversal called in step
1415 and shown in detail in FIG. 15.

In some embodiments, the process illustrated in FIG. 15
starts at step 1505, where traversal of the 2D mesh (a polyline)
of' on-wedge mesh triangle segments begins with traversal of
an untraversed segment. The traversal of a polyline from
segment to segment is straightforward, proceeding in one of
two directions from a segment to neighboring segments. The
corresponding 3D traversal of a triangle mesh (detailed in the
discussion of FIG. 20) can occur across one of three neigh-
boring boundaries, and proceeds for example in a flood-fill or
breadth-first traversal.

10

15

20

25

30

35

40

45

50

55

60

65

118

Process flow proceeds to decision step 1510 to determine if
any untraversed (by the current 2D mesh traversal process)
triangles/segments exist in the 2D shaft between the current
segment and the supporting viewcell element (segment-view-
cell element shaft, or SEG-VCE shaft). The intersection of a
single initial wedge with multiple visible mesh triangles can
produce multiple polyline segments and potentially multiple
corresponding 2D shafts. In one implementation, a 2D shaft
(SEG-VCE shatt) is constructed for each of these segments.
Alternate embodiments are possible in which a single con-
servative shaft bounding multiple connected segments is used
to accelerate the shaft-containment test of step 1510. If any
untraversed triangles/segments exist in the larger containing
shaft, then the process can revert to the individual shafts for
each segment.

In some embodiments, the shaft inclusion test of step 1510
is further accelerated by employing a hierarchical spatial
subdivision (and/or hierarchical bounding box structures) to
organize the 3D polygon mesh geometry. Using any hierar-
chical organization of the database tends to reduce the cost of
the shaft inclusion test from approximately N*M to approxi-
mately N Log(M), where M is the number of polygons in the
model and N is the number of shafts tested.

According to some embodiments, if the initial wedge is a
SV-ME wedge, then the corresponding SEG-VCE shafts are
formed from the supporting lines between the segment and
the supporting viewcell vertex. In further embodiments, if the
initial wedge is a SE-MV wedge, then the corresponding
SEG-VCE shafts are formed from the supporting lines
between the segment and the supported mesh silhouette ver-
tex, since in this case, visibility is from a viewcell edge but
through a mesh silhouette vertex. If the original wedge is a
SE-ME type, generated in the special case where the sup-
ported silhouette edge and the supporting viewcell edge are
parallel, then the SEG-VCE shaft is formed by from the
supporting lines between the segment and the supporting
viewcell edge.

If untraversed segments exist in the SEG-VCE shaft, then
process flow continues to step 1530, where the 2D traversal
jumps to closer segments in the SEG-SILE shaft. These two
steps enforce a front-to-back processing order. As will be
described, this is analogous to the steps 2010 and 2030 for the
3D mesh traversal process. Note the similarity between FIG.
15 and FIG. 20. Whereas the 3D traversal uses a 3D mesh
triangle-viewcell (TRI-VC) shaft to test for closer untra-
versed elements, the present 2D traversal employs the 2D
SEG-VCE shaft to test for closer untraversed elements.

If, in decision step 1510, it is determined that no untra-
versed segments exist in the SEG-VCE shaft, then process
flow continues to step 1515 to determine if the currently
traversed segment contains an occlusion boundary (OB) point
or a containment boundary point.

A containment boundary point occurs at the intersection of
a polyline segment and the boundary of the wedge.

An OB point represents the boundary between from-VCE
visible and from-VCE occluded on the 2D polyline manifold.
An OB point may occur at the intersection of a WL with a
polygon mesh segment on the wedge. Each intersection of a
WL and a polygon mesh segment is 1D element (point) of the
corresponding 2D (on-wedge) discontinuity mesh. As with
any visibility event surface, a WL represents visibility from a
specific source (VCE) feature (vertex in the 2D case). Accord-
ing to some embodiments, ifthe VCE is a viewcell edge, in the
case of SE-ME wedge, then the WL does not necessarily
represent a boundary between from-viewcell-edge visible

US 9,171,396 B2

119

and from viewcell-edge-occluded regions on the wedge,
except in the limit at the origin of the WL on the correspond-
ing silhouette vertex.

This is because for any from-region visibility problem the
actual portion of space occluded from the region (region
being the viewcell edge in the 2D case of a SE-ME wedge) is
determined not only by the intersection of the event surfaces
(WLS) with the mesh polygons but also by the intersection of
the WLS with other WLS. These intersections together form
1-manifold surfaces which bound the from-viewcell-edge
umbral regions. These 1-manifold surfaces are called the
polyline aggregate umbrae (PLAU). The PLLAU are formed
from segments called umbra boundary lines (UBLS) which
can be constructed from the corresponding WLS.

Consequently, not all 2D discontinuity mesh points
(2DDM) points (at the intersection of a WL and an on-wedge
triangle segment) are occlusion boundary (OB) points. The
identification of actual OB points is made in steps 1563 which
is discussed in detail later.

If, in decision step 1515, it is determined that the current
segment contains an OB point then process flow proceeds to
step 1535 to interrupt the traversal of the current 2D mesh at
the OB point. In further embodiments, process flow proceeds
from step 1535 to process 15-1, which returns the process
flow to step 1525. Similarly, in decision step 1515, it is deter-
mined if the current segment of the 2D mesh contains a
containment boundary. This boundary point is an intersection
of the 2D mesh with a boundary line of the wedge, as deter-
mined in steps 1410 or 1455 in FIG. 14 (the process control-
ling the main 2D traversal process of FIG. 15). If, in decision
step 1515, it is determined that the current 2d mesh segment
contains a containment point, then process flow proceeds to
step 1535, where the traversal of the 2D mesh is interrupted at
the containment boundary point. Following step 1535, the
traversal of the 2D mesh (polyline) may continue across other
non-containment or non-occlusion vertices.

If, in decision step 1515, it is determined that the current
segment does not contain an OB point or a containment point,
then process flow proceeds to step 1520 to determine if the
SEG has a first-order, from-viewcell silhouette vertex. In
some embodiments, a vertex is determined to be a silhouette
vertex if the vertex corresponds to the intersection of the
current wedge with a first-order, from-viewcell silhouette
edge. This point is a compound silhouette vertex (CSV)
which is a point of intersection of the current wedge with the
wedge incident on the from-viewcell silhouette edge.

If, in decision step 1520, it is determined that no silhouette
vertex exists on the current segment, then process flow pro-
ceeds to step 1525, where the traversal of the 2D mesh pro-
ceeds to the next untraversed segment sharing a non-silhou-
ette vertex with the current segment, using a breadth-first or
flood-fill traversal of the 2D mesh.

If the current segment has a silhouette vertex, then the
normal breadth-first or flood fill traversal of the 2D mesh is
not continued at a silhouette vertex. Instead, if in decision step
1520, it is determined that the current segment contains a
first-order-silhouette vertex, then process flow proceeds to
step 1545 to construct a wedge line (WL) on the silhouette
vertex (the CSV) by pivoting to the viewcell element (VCE)
that supports the current wedge.

If the current wedge being processed is an SV-ME wedge,
then the WL in step 1545 is constructed by pivoting from the
CSV to the viewcell vertex on which the current wedge is
constructed. The use of this process to identify CSVs and
construct wedge lines for a SV-ME wedge is illustrated in
FIG. 41A and F1G. 41B and discussed in detail in conjunction
with those figures. In some embodiments, if the current

30

40

45

50

60

120

wedge being processed is an SE-MV wedge, then the WL in
step 1545 is constructed by pivoting from the CSV to the
(inside-corner) mesh silhouette vertex (or other CSV) on
which the current wedge is constructed.

In other embodiments, if the current wedge being pro-
cessed is an SE-ME wedge, the special case of mesh silhou-
ette edge parallel to supporting viewcell edge, then the WL is
constructed by pivoting from the CSV to the supporting ver-
tex belonging to the supporting viewcell edge on which the
current wedge is constructed. The use of this process to iden-
tify CSVs and construct wedge lines for a SE-ME wedge is
illustrated in FIG. 41C and discussed in detail in conjunction
with that figure.

In a subsequent decision step, it is determined if the wedge
currently being processed is a SE-MV type. In this case the
corresponding WL was constructed, in step 1545, by pivoting
to an inside-corner mesh silhouette vertex. If, in decision step
1550, it is determined that the current wedge being processed
is a SE-MV wedge, then process flow proceeds to step 1553,
otherwise process flow proceeds directly to step 1555.

In step 1553, the WL is extended to the (SE-MV) wedge’s
supporting viewcell edge. In some embodiments, the inter-
section of the WL and the wedge’s supporting viewcell edge
is stored as the SVV for the wedge. This point is used to
initiate the sweep which will ultimately construct the SE-MV
wedges that connect the current wedge and the wedge inter-
sected by the current wedge at the CSV on which the WL is
constructed. Ifthe current wedge being processed is aSV-ME
wedge, then the SVV is the wedge’s SVV used to construct
the wedge. If the current wedge being processed is a SE-ME
wedge, then the SVV is one of the vertices of the viewcell
edge used to construct the wedge. In both of these, cases the
determination of an explicit SVV point supporting the WL is
simplified.

This SVV isused as the “starting” SVV for a sweep process
that ultimately generates SE-MV wedges, which connect the
wedge currently being processed with the wedge incident on
the CSV. These “secondary” connecting wedges are gener-
ated, for example in step 1240 of FIG. 12 (discontinuity mesh
implementation) and in step 2043 of FI1G. 20 (direct construc-
tion of visibility map by 3D mesh traversal).

In a subsequent step 1555, the WL generated in step 1545
is intersected with mesh triangle/segments (all of which inter-
sect the current wedge) in order to find the closest from-point
visible triangle that intersects the current wedge. In one
embodiment, this intersection is determined using ray cast-
ing, with the WL as the ray. In some embodiments, techniques
to accelerate this ray cast determination, including the hier-
archical spatial subdivision of the triangle mesh database
previously described, are employed.

The point of intersection between the WL and the closest
mesh triangle identified in step 1555 is a vertex or point of the
2D conservative umbral discontinuity mesh
(2DDM_POINT) corresponding to the visibility from the
viewcell vertex (or mesh silhouette vertex in the SE-MV
case), which supports the WL. Since the silhouette vertices
are from-viewcell and not from-viewcell element, the result-
ing 2D discontinuity mesh is conservative.

Process flow proceeds from step 1555 to decision step 1563
to determine if the 2DDM_POINT is occluded from all other
“parts” of the corresponding VCE except the vertex support-
ing the WL.

If the wedge on which this 2D discontinuity mesh is being
constructed is a SV-ME type, then the 2DDM_POINT is
“otherwise occluded” from the corresponding VCE since the
VCE itself is a point. Once again, in this context, “otherwise
occluded” means that the 2DDM-POINT is occluded from all

US 9,171,396 B2

121

other parts of the VCE, except the vertex that supports the
corresponding WL. This is also true for 2DDM-POINTS
corresponding to SE-MV wedges.

In both of these cases, the 2DDM-POINT corresponds to
an occlusion boundary (OB) point of the on-wedge from
“region” visibility map, since the source “region” is a point.

Inthe case of an SE-ME wedge, however, the VCE is a true
region (a line segment). In this case, a 2DDM-POINT is not
necessarily an occlusion boundary (OB) point since an OB
point is a point on the corresponding 2D visibility map indi-
cating the boundary between “occluded from the region
(VCE)” and “not occluded from the region (VCE).

The details of the process shown in step 1563 are given in
FIG. 16 and discussed in conjunction with that figure.

If, in decision step 1563, it is determined that the
2DDM_POINT is otherwise occluded from the VCE, then the
point is added to the (closest) intersected triangle/segment as
an OB point, in step 1568. Otherwise the 2DDM_POINT is
notadded to the segment as an OB point and process proceeds
from step 1563 to step 1580 to determine if any unprocessed/
untraversed segments exist in the current “traversal”. In this
context, a (2D) “traversal” is defined as a set of segments
connected to the current segment by non-silhouette vertices.

I, in decision step 1580, it is determined that there are
untraversed segments in the traversal then, process flow pro-
ceeds to step 1525, where the next untraversed segment is
processed.

If, on the other hand, it is determined in decision step 1580
that there are no unprocessed segments in the traversal, then
process flow proceeds to step 1583, where the segments con-
taining the OB points generated by the current traversal are
restricted such that the portion of the segment on the “from-
VCE” occluded side of the OB points are effectively removed
and the segment is terminated by the corresponding OB point.

These OB points, added to a segment, are the same occlu-
sion boundaries that are later identified during traversal of a
2D mesh containing the segment for example in step 1515,
occlusion boundary.

Process flow proceeds from step 1583 to step 1585 to
continue the traversal of the 2D mesh on the unoccluded side
of'the OB points. Since the WLS from one triangle/seg mani-
fold may produce OB points on a different (disconnected)
triangle/seg manifold, this represents a continuation of the
traversal on a newly connected manifold (the polyline aggre-
gate umbra, or PLAU) formed by “occluder fusion” of the two
manifolds by the WL at the OB point.

In one implementation of the present method, the entire set
of triangle mesh objects is contained by an enclosing mesh
object. This enclosing mesh object is similar to a “skybox”
commonly used to surround mesh objects for interactive visu-
alization applications. The present method of mesh traversal
in 2D (and the related 3D mesh traversal method) treat the
enclosing skybox mesh as any other triangle mesh manifold.
This approach insures that the traversal effects an omnidirec-
tional traversal of the entire database even where other mesh
objects are not present in the database. The use of this enclos-
ing mesh makes the current method output-sensitive, since
only the encountered unoccluded meshes need to be pro-
cessed, there is no need to necessarily process each mesh in
the database. Moreover, the present method naturally identi-
fies the unoccluded regions of the skybox itself, which,
because of its size and position, is typically otherwise a
source of significant overdraw.

FIG. 15 and related figures show a method of constructing
afrom-region visibility map in which each generated segment
of the corresponding umbral discontinuity mesh is tested to
determine if it is actually a segment of the from-region vis-

10

15

20

25

30

35

40

45

50

55

60

65

122

ibility map (i.e., a from-viewcell occlusion boundary). An
alternate embodiment uses the 3D and 2D mesh traversal
process to construct the discontinuity mesh segments pro-
duced by wedges generated on the encountered silhouette
edges. In this alternate embodiment, each of the resulting
discontinuity mesh regions are subsequently tested to deter-
mine ifit is an umbral region, for which traversal is restricted;
or an antumbral region, for which traversal is not restricted.
This determination can employ the modified point-in-poly-
hedron test using first-order wedges or higher-order UBPs.

FIG. 41A is a diagram showing the process of on-wedge
visibility determination for a simple SV-ME wedge using the
method of FIG. 15 and related figures.

FIG. 41B is also a diagram showing the process of on-
wedge visibility determination for a SV-ME wedge. In this
case, the wedge intersects a polygon mesh in such a way that
the resulting compound silhouette vertex is a cusp of the
first-order silhouette contour.

FIG. 41C is a diagram showing the process of on-wedge
visibility determination for a SE-ME wedge using the method
of FIG. 15 and related figures.

Details are presented with the discussion of the related
figure.

FIG. 16 Process for Determining if 2D Discontinuity Mesh
Point is Otherwise Conservatively Occluded from the
Wedge’s Corresponding Viewcell Element (VCE).

In the main 2D mesh traversal process shown in FIG. 15,
step 1563 is a decision test to determine if a 2DDM_POINT
is occluded from all other “parts” of the wedge’s VCE. FIG.
16 illustrates one embodiment of implementing the details of
this test.

The wedge’s VCE is the point or line segment from which
on-wedge visibility is determined. By convention, a
2DDM_POINT is occluded from the corresponding support-
ing point of the VCE. Actually the 2DDM_POINT is on the
boundary between being occluded and unoccluded from the
corresponding point of the VCE.

Ifthe VCE itself is a single point (SV-ME, or SE-MV type
wedge), then the corresponding 2DDM_POINT is occluded
from “all parts” of the VCE since, being a point, the VCE has
no other parts.

In some embodiments, the process illustrated in FIG. 16
starts at decision step 1610 determines if the wedge corre-
sponding to the 2DDM_POINT to be tested is a SE-ME
wedge.

If, in decision step 1610, it is determined that the corre-
sponding wedge is not an SE-ME type, then process flow
proceeds to step 1615 to set the 2DDM_POINT to be other-
wise occluded from the VCE. As shown in FIG. 15, step 1563
and step 1568, this causes the tested 2DDM_POINT to
become an OB point.

If, in decision step 1610, it is determined that the corre-
sponding wedge is an SE-ME wedge, then process flow pro-
ceeds to step 1620 to form a 2D shaft (2DDM_VCE shaft)
between the 2DDM_POINT being tested and the VCE, which
in this case is actually an edge of the viewcell.

Process flow proceeds to decision step 1625 to determine if
any untraversed (by the 2D traversal) triangle/segments exist
in the 2DDM_VCE shaft constructed in step 1620.

If, in decision step 1625, it is determined that the unproc-
essed triangles/segments exist in the 2DDM_POINT-VCE
shaft, then processing proceeds to step 1630, where the 2D
traversal is jumped to the closer unprocessed triangle/seg-
ments in the 2DDM_POINT-VCE shaft, and the process
illustrated in FIG. 16 terminates.

If, on the other hand it is determined, in decision step 1625,
that no untraversed triangle segments are inside the

US 9,171,396 B2

123
2DDM_POINT-VCE shaft, then process flow proceeds to
step 1635 to identify all WLS in the 2DDM_POINT-VCE
shaft and place each identified WLS in a list, which is referred
to as LIST. In embodiments, these WLS would have already
been constructed in the main 2D traversal step 1545 shown in
FIG. 15.

Process flow proceeds from 1635 to decision step 1640, to
process each of the wedge lines identified is step 1635, and
placed in the LIST, to determine if the WL is a first-order
wedge line or higher-order WL. The process of adjusting a
first-order WL to form a higher order WL by backprojection
is discussed in detail later in this specification in conjunction
with FIG. 17 and FIG. 18.

For each of the WLS in the list processed in decision step
1640, if it is determined that the processed WL is a higher-
order WL then, process flow proceeds to step 1645, where the
higher-order WL identified in step 1640 is intersected with all
other WLS that are in the 2DDM_POINT-SHAFT and a shaft
formed between the WL and the VCE. In some embodiments,
the intersection of this segment of the higher-order WL with
other potentially intersecting WLS produces a corresponding
portion of the from-VCE umbra boundary line (UBL).
Whereas the WL reflects the visibility from a single vertex of
the VCE, the corresponding UBL reflects the visibility (oc-
cluded or not occluded) from the entire VCE (where the VCE
is a viewcell edge in this case). A UBL may have from-VCE
occluded and from-VCE unoccluded segments based on the
intersection of the UBL’s WL with other WLS.

Process flow proceeds from step 1645 to step decision step
1647 to determine if any unprocessed WLS remain in the
LIST. Ifthere are unprocessed WLS inthe LIST, then process
returns to step 1640.

If, in decision step 1640, it is determined that the processed
WL is a first-order WL, then process flow proceeds directly to
step 1647 to determine if any unprocessed WLS remain in the
LIST. Ifthere are unprocessed WLS inthe LIST, then process
flow returns to step 1640.

If, in decision step 1647, it is determined that the LIST is
empty then, process flow proceeds to step 1650, where the
2DDM_POINT is subjected to a modified point-in-polygon
test to determine if it is occluded from the VCE. As previously
discussed in embodiments, in conjunction with step 1445 in
FIG. 14, this test employs a 2D version of the modified
point-in-polyhedron test shown in FIG. 25, which is dis-
cussed in conjunction with that figure. This modified point-
in-polyhedron test uses first-order event surfaces (first-order
wedges), or the corresponding wedge lines (WLS) in the 2D
case; and, optionally, higher-order umbral boundary poly-
gons (UBPs), or the corresponding umbral boundary lines
(UBLS) in the 2D case. This test allows an implicit solution to
the point-in-polyhedron or point-in-polygon problem with-
out necessarily constructing the entire polyhedron/polygon.

Process flow proceeds from step 1650 to step 1655 to
examine the result of this modified point-in-polygon test of
step 1650. If the 2DDM_POINT is occluded then process
flow proceeds to step 1660 to return yes, otherwise process
flow proceeds to 1665 to return no.

FIG. 172D Mesh Traversal: Construction of Higher-Order
Wedge Lines by Backprojection

The 2D mesh traversal process for determining on-wedge
visibility described in FIG. 14, FIG. 15, and FIG. 16 and
related figures employs first-order wedge lines (constructed
in step 1545 of FIG. 15).

Inthe case of SV-ME and SE-MV wedges, the correspond-
ing wedge lines are from-point visibility event surfaces that
are exact. In these cases, WL is also a from-region umbra

35

40

45

55

60

124

boundary line [UBL] for the “from-region” visibility problem
since the source “region” is degenerate it is a point.

However, in the case of an SE-ME wedge, the determina-
tion of on-wedge visibility is a true from-region visibility
problem in which visibility is determined from a viewcell
edge. In this case, in some embodiments, a first-order visibil-
ity event surface constructed on a vertex of the viewcell
(actually a 1 degree-of-freedom surface: a wedge line) is only
guaranteed to conservatively approximate the corresponding
exact event surface, they are not necessarily the same line.

This is because the construction of a first-order WL
assumes that the entire source or view-region, in this case a
viewcell edge, is visible from the silhouette vertex on which
the wedge line is constructed. In this sense, the first-order
model of visibility propagation in polyhedral/polygonal envi-
ronments developed in the present embodiments treat a
source view region in some respects as a “viewpoint,” since
this assumption is always true for a single viewpoint.

For a view region, however, this assumption may not be
true. In fact, the supporting viewcell vertex (SVV) used to
construct the WL may actually be occluded when viewed
from the silhouette vertex supporting the WL. In this case, the
exact WL and the first-order WL are not the same.

To determine a more precise WL incident on the same
first-order silhouette vertex, in some embodiments, the pro-
cess of from-point backprojection is employed using the first-
order silhouette vertex as the viewpoint. In the method of
backprojection, a discontinuity mesh or visibility map is con-
structed on the view region itself (a viewcell edge in this 2D
on-wedge visibility case), using some structure of the mesh as
the view source (a first-order silhouette vertex in this 2D
case).

The present method employs a focused, conservative back-
projection approach in order to identify a conservative (from-
silhouette vertex) visible supporting viewcell vertex (VSVV)
on which to construct the WL. This “adjustment” of the WL is
applied only in the case that the supporting viewcell vertex
(SVV), used in construction of the original frontprojection
first-order WL, is occluded from the supporting silhouette
vertex. Otherwise, the first-order event surface (the WL) is
exact.

Embodiments employ a method of 2D mesh traversal to
compute backprojection, similar to the method shown in FIG.
14, FIG. 15. and FIG. 16 for the case of on-wedge frontprojec-
tion (from viewcell element) on-wedge visibility.

The on-wedge backprojection problem of finding the
VSVV is always a from-point visibility problem, since the
on-wedge from-VCE silhouette structure (the backprojection
source) is always a point.

In some embodiments, the process of identifying an on-
wedge, from-silhouette-vertex, VSVV in case the SVV is
occluded, starts at step 1705 (FIG. 17) to select a seed mesh
triangle/segment.
2D Mesh Traversal for Backprojection: Method of Employ-
ing Only Frontprojection-Unoccluded Triangle/Segments

In one implementation of the method, only those triangles/
segments that are visible in the frontprojection (from the
viewcell edge) are used in the backprojection. In this method,
the triangles/segments visible in the frontprojection have
their face orientation reversed for the backprojection calcu-
lation. Commonly, the frontprojection silhouette vertex and
the backprojection silhouette vertex, when viewed from the
mesh silhouette vertex that is the “source” point for the back-
projection, are the same vertex. In this case, there are, no
frontprojection-unoccluded segments facing the backprojec-
tion source point (the first-order silhouette vertex before an
orientation reversal is applied.

US 9,171,396 B2

125

In other cases, not all of the frontprojection visible mesh
elements will be backfacing with respect to the reprojection
source point. In these cases, if the triangle’s/segment’s ori-
entation was reversed, it would become back facing from the
backprojection source point. This causes it to be backfacing
with respect to the point and therefore create a mesh with
triangles/segments having an inconsistent orientation. In this
case, the triangles/segments that would develop a backfacing
orientation with respect to the backprojection point are
removed from the mesh.

The failure to include some potentially occluding geom-
etry in the backprojection may reduce the precision of the
computed VSVV and the related adjustment of the WL. How-
ever, a conservative result is still insured, since the elimina-
tion of any potentially occluding geometry will only make the
computed VSVV a more conservative estimate of the SVV.
Moreover, by employing only frontprojection-visible tri-
angles/segments, the cost of the backprojection process is
significantly reduced, since the relevant front-projection vis-
ible triangles/segments have already been determined by the
time the backprojection process is initiated for a specific
mesh silhouette vertex.

In this approach, the frontprojection visible mesh elements
are effectively used as virtual occluders to compute the back-
projection.

Hence in step 1705, the selection of a seed 2D mesh, the
selection is made from the set of meshes that are visible
(unoccluded) in the frontprojection.
2D Mesh Traversal for Backprojection: Retraction of the
Silhouette Vertex Under Higher-Order Visibility

In one implementation of the present method, the back-
projection is determined only from those backprojection
sources, mesh silhouette vertices in this case, that are first-
order silhouette vertices in the frontprojection, when viewed
from the VCE. In this implementation, only those WLS
attached to first-order, frontprojection silhouette vertices are
“adjusted” by backprojection to reflect higher-order on-plane
visibility. The adjusted WLS remains attached to the original
mesh silhouette vertex.

Actually, when any vertex that is a first-order, frontprojec-
tion silhouette vertex, when viewed from SVYV, is viewed
from the VSVYV, it may no longer be a silhouette vertex since
both triangles/segments sharing the vertex may be backfacing
with respect the VSVV. In such a case, the frontprojection
silhouette vertex (backprojection source) is actually occluded
from the viewcell element (edge in this case). In such a case,
the actual (exact) from-region umbral event surface is not
supported by this frontprojection silhouette vertex, but by a
vertex on the same 1-manifold that is closer to the viewcell.
This migration or “retraction” of the first-order from-viewcell
silhouette toward the viewcell is a potential effect of higher-
order visibility as determined by backprojection. The failure
to account for this migration of the silhouette may in some
cases reduce the precision of the computed VSVV and the
corresponding adjustment of the WL.. However, a conserva-
tive result is still insured since an adjusted visibility event
surface, WL in this case, attached to a frontprojection first-
order silhouette vertex will always produce a more conserva-
tive umbral event surface than the corresponding event sur-
face attached to the corresponding retracted silhouette.

By keeping an adjusted WL attached to its original first-
order frontprojection silhouette vertex, the “supporting seg-
ment” of the adjusted WL between the silhouette vertex and
the VSVV can potentially violate the “local visibility” of the
mesh on which it resides by penetrating the mesh surface. Itis
precisely in such a case that the silhouette vertex would tend
to migrate toward the viewcell such that one of the closer

10

15

20

25

30

35

40

45

50

55

60

65

126

connected vertices of the mesh produce an adjusted WL that
does not violate local visibility, and as such becomes the
“exact” silhouette vertices.

In order to keep the conservative adjusted WL attached to
its original first-order, frontprojection silhouette vertex, the
backprojection process is designed to prevent violations of
local visibility by an adjusted WL. This occurs when the
adjusted WL originates on the frontprojection first-order sil-
houette vertex in such a way that the WL is on the inside of the
mesh triangle 1-manifold (polyline). This is a type of self-
occlusion of the 1-manifold that can be prevented by detect-
ing all mesh elements (polyline segments in this case) that
form a connected component with the frontprojection silhou-
ette vertex, wherein the connected component is entirely
inside the shaft between the VCE edge segment and the ver-
tex. This can be performed using a simple traversal of the
polyline, starting at the vertex and ending when a segment
intersects the shaft boundary. These mesh elements are the
ones that can produce the type of self occlusion that causes
retraction of the silhouette vertex. By identifying and elimi-
nating these elements from the backprojection determination,
the backprojection will produce a conservative “adjusted”
WL that remains attached to the original frontprojection sil-
houette vertex but which accounts for higher-order visibility
effects that cause the SVV to be occluded from the silhouette
vertex.

Thus, in step 1705 of FIG. 17, the selection of the seed 2D
mesh elements for backprojection, those mesh elements that
could potentially cause self-occlusion of the backprojection-
source vertex are excluded from consideration.

This approach simplifies the implementation in the present
case of on-wedge visibility by 2D mesh traversal. Even
greater simplification is achieved when this method is
employed in case of from-viewcell visibility by 3D mesh
traversal, as discussed in conjunction with FIG. 19, FIG. 20,
and FIG. 21. By employing this method in the 3D mesh
traversal case, the event surfaces (wedge polygons) remained
attached to the original first-order frontprojection silhouette
contours such that the construction of a continuous, conser-
vative from-region umbral boundary surface is in insured.

Once again, alternate implementations are possible in
which retraction of the silhouette vertex is allowed by
accounting for self occlusion. For example, one approach to
finding the “retracted” silhouette vertex is to compute the
backprojection from the initial frontprojection, first-order sil-
houette vertex and determine if the WL corresponding to the
computed VSVV violates local visibility. If local visibility is
violated, then the vertex is not actually visible from the view-
cell when higher-order effects are taken into account and the
adjacent vertex closer to the VCE edge is then used as source
point for the backprojection to determine if the WL corre-
sponding to the new point’s VSVV violates local visibility.
The process can be repeated until a WL that does not violate
local visibility is encountered. This WL is used as the
adjusted, higher-order WL.

In general, the amount of additional from-region occlusion
that results only from the retraction of the silhouette vertex is
usually small whereas the increased complexity of the back-
projection can be significant. Keeping the frontprojection WL
fixed to the original frontprojection, first-order silhouette ver-
tex and computing an “adjusted” WL corresponding to the
VSVV by backprojection is an approach which accounts for
most of the higher-order visibility effect with little increased
cost.

As previously emphasized, the higher-order backprojec-
tion adjustment is only applied when the original SVV is
occluded from the first-order silhouette vertex. In some

US 9,171,396 B2

127

embodiments, simple metrics are employed to determine the
maximum possible deviation between the a first-order WL
and the corresponding adjusted higher-order WL. For
example, the angle formed by the first-order WL (i.e., a sup-
porting line) and the corresponding separating line between
the silhouette vertex and the VCE is the maximum angular
deviation between the first-order WL and the higher-order
WL; since using the present method the higher-order WL can
in the limit only equal the separating line if the VSVV is the
separating point. This angle naturally tends to decrease with
increasing distance from the VCE. That is, the view region
appears more “point like” from the backprojection source.
Consequently, the higher-order visibility effect determined
by the backprojection method become less important at
greater distances from the view region. In some embodi-
ments, the angle metric is used to determine if higher-order
effects should be computed for any given frontprojection,
first-order silhouette vertex.

Returning now to FIG. 17, which illustrates the overall
control process for initiating, reinitiating, and terminating the
2D backprojection traversal, a seed triangle/segment of some
initial on-wedge 2D mesh is selected to initiate the traversal
as shown in step 1705.

As in the frontprojection implementation (step 1405 of
FIG. 14), the selection of an initial seed triangle/segment that
is likely to be an exposed occluder accelerates the process.

Process flow proceeds from 1705 to step 1710 to construct
containment points on the seed mesh using ray casting. The
on-wedge backprojection problem is confined to the region
inside a 2D shaft formed by the backprojection-source point
(a mesh silhouette vertex) and the VCE (a viewcell edge in
this case). Thus, in some embodiments, the containment
points in step 1710 are identified using the edges of this shaft
as the rays for ray casting.

Process flow proceeds to step 1715 to call the main process
of'the from-vertex 2D mesh traversal method for determining
the visible segments in this shaft.

As with the main process of the from-edge 2D mesh tra-
versal method (shown in FIG. 15); the main process of the
from-point backprojection mesh traversal can incur suspen-
sions (such as the suspension of step 1830 of FIG. 18. Process
flow proceeds to decision step 1720 to determine if there are
any existing suspended traversals from the main process of
the from-vertex backprojection 2D mesh traversal (FIG. 18).

As the backprojection process involves the construction of
visibility map on the original source VCE, the steps shown in
FIG. 17 are similar to the steps of FIG. 14 (frontprojection,
on-wedge visibility map construction). Likewise the steps
shown in FIG. 17 (backprojection, on-wedge visibility map
are similar to the steps shown in FIG. 18 (frontprojection,
on-wedge visibility map), except that in the backprojection
case the source is a vertex, whereas in the frontprojection
case, the source may be an edge (SE-ME wedge case)

The flowchart shown in FIG. 17 shows the process of
initiating, reinitiating, and halting the main 2D traversal pro-
cess which is shown in detail in FIG. 18., and which is
described in detail in a subsequent part of this specification.

If, in decision step 1720, it is determined that there are no
existing segments on which the main part of the 2D mesh
traversal has been suspended, then process flow proceeds to
step 1725 in which the 2D mesh traversal for the wedge is
terminated, thereby completing the construction of the 2D
on-wedge visibility map.

If, in decision step 1720, it is determined that there exist
segments of the 2D mesh for which the main 2D mesh tra-
versal has been suspended (in step 1830 of FIG. 18), then
process flow proceeds to decision step 1730 to determine if

30

40

45

128

any triangles exist in the shaft formed by the suspended
segment (SEG) and the backprojection source vertex.

If, in decision step 1730, it is determined that there are no
triangles in the shaft between the seg and the source vertex,
then process flow proceeds to step 1755 to construct contain-
ment points on the 2D mesh (polyline) formed by the seg-
ments connected to the current suspended segment.

Process flow proceeds to step 1760 to reinitiate the 2D
mesh traversal on the previously suspended segment.

If, in decision step 1730, it is determined that there are
triangles in the shaft between the SEG and the source vertex,
then process flow proceeds to step 1735 to determine if any
triangles/segments in the SEG-VCE shaft are untraversed.

If, in decision step 1735, it is determined that untraversed
triangles/segments exist in the SEG-VERTEX shaft, then
process flow proceeds to step 1740, where the 2D mesh tra-
versal is “jumped” or restarted on the closer untraversed
triangles/segments in the SEG-VERTEX shaft. This step,
which also occurs in step 1830 of the backprojection main 2D
traversal process shown in FIG. 18, insures that all potentially
occluding triangles/segments have been processed before the
traversal is continued and before a decision to stop the tra-
versal (because the suspended segment is completely
occluded from the source vertex) is made.

If, in decision step 1735, it is determined that no untra-
versed triangles exist in the SEG-VERTEX shaft, then pro-
cess flow proceeds to step 1745 to determine if a point on the
current (suspended) segment is inside any polyline aggregate
umbrae (PLAU) which represents one or more polygonal
subregions of the wedge that are occluded from the wedge’s
source vertex. In some embodiments, this test employs a 2D
version of the modified point-in-polyhedron test shown in
FIG. 25. This modified point in polyhedron test uses first-
order event surfaces (first-order wedges), or the correspond-
ing wedge lines (WLS) in the 2D case; and, optionally,
higher-order umbral boundary polygons (UBPs), or the cor-
responding umbral boundary lines (UBLS) in the 2D case.
This test allows an implicit solution to the point-in-polyhe-
dron or point-in-polygon problem without necessarily con-
structing the entire polyhedron/polygon.

If, in decision step 1745, it is determined that a point on the
suspended segment is inside a PLAU, then process flow pro-
ceeds to step 1750, where the traversal is not reinitiated on the
suspended segment and the suspended segment is no longer
labeled as suspended. Process flow terminates at 1750.

If, in decision step 1745, it is determined that the suspended
segment is not inside any PLAU, then process flow proceeds
to step 1755, where the containment points of the associated
2D mesh are constructed. Process flow proceeds to 1760 to
reinitiate the traversal as previously described in conjunction
with corresponding step 1460 of FIG. 14.

FIG. 18 Backprojection, from-Vertex, 2D Mesh Traversal
Main Process

According to some embodiments, the main process of the
on-wedge, from-vertex, backprojection 2D mesh traversal
process is similar to the on-wedge, from-vertex, frontprojec-
tion 2D mesh traversal process shown in FIG. 15.

In some embodiments, the process illustrated in FIG. 18
starts at step 1805 to begin traversal of the 2D mesh (a
polyline) of on-wedge mesh triangle segments with traversal
of an untraversed segment. The traversal of a polyline from
segment to segment is straightforward, proceeding in one of
two directions from a segment to neighboring segments. The
corresponding 3D traversal of a triangle mesh (detailed in the
discussion of FIG. 20) can occur across one of three neigh-
boring boundaries, and proceeds for example in a flood-fill or
breadth-first traversal.

US 9,171,396 B2

129

Process flow proceeds to step 1810 to determine if any
untraversed (by the current 2D mesh traversal process) tri-
angles/segments exist in the 2D shaft between the current
segment and the source vertex. The intersection of a single
initial wedge with multiple visible mesh triangles can pro-
duce multiple polyline segments and potentially multiple cor-
responding 2D shafts. In one implementation, a 2D shaft
(SEG-VERTEX shaft) is constructed for each of these seg-
ments. Alternate embodiments are possible in which a single
conservative shaft bounding multiple connected segments is
used to accelerate the shaft-containment test of step 1810. If
any untraversed triangles/segments exist in the larger contain-
ing shaft, then the process can revert to the individual shafts
for each segment.

In some embodiments, the shaft inclusion test of step 1810
is further accelerated by employing a hierarchical spatial
subdivision (and/or hierarchical bounding box structures) to
organize the 3D polygon mesh geometry. Using any hierar-
chical organization of the database tends to reduce the cost of
the shaft inclusion test from approximately N*M to approxi-
mately N Log(M), where M is the number of polygons in the
model and N is the number of shafts tested.

If untraversed segments exist in the SEG-VERTEX shatft,
then process flow continues to step 1830, where the 2D tra-
versal jumps to closer segments in the SEG-VERTEX shaft.
These two steps enforce a front-to-back processing order.

If, in decision step 1810, it is determined that no untra-
versed segments exist in the SEG-VERTEX shaft, then pro-
cess flow continues to step 1815 to determine if the currently
traversed segment contains a backprojection occlusion
boundary (BOB) point or a containment boundary point.

According to some embodiments, a backprojection occlu-
sion boundary (BOB) point represents the boundary between
from-vertex visible and from-vertex occluded on the 2D
polyline manifold. A BOB point occurs at the intersection of
a backprojection wedge line (BWL) with a polygon mesh
segment on the wedge. Each intersection of a BWL and a
polygon mesh segment is 1D element (point) of the corre-
sponding 2D (on-wedge) discontinuity mesh.

If, in decision step 1815, it is determined that the current
segment contains an BOB point, then process flow proceeds
to step 1835 to stop the traversal of the current 2D mesh at the
BOB point, where the process illustrated in FIG. 18 is inter-
rupted. In further embodiments, process flow proceeds from
step 1835 to process 18-1, which returns the process flow to
step 1825.

Similarly, in decision step 1815, it is determined if the
current segment of the 2D mesh contains a containment
boundary. This boundary point is an intersection of the 2D
mesh with a boundary line of the wedge, as determined in
steps 1710 or 1755 in FIG. 17 (the process controlling the
main backprojection 2D traversal process of FIG. 17). If, in
decision step 1815, it is determined that the current 2D mesh
segment contains a containment point, then process flow pro-
ceeds to step 1835, where the traversal of the 2D mesh is
interrupted at the containment boundary point. In further
embodiments, process flow proceeds from step 1835 to pro-
cess 18-1, which returns the process flow to step 1825. If, in
decision step 1815, it is determined that the current segment
does not contain an BOB point or a containment point, then
process flow proceeds to step 1820 to determine if the current
segment contains a silhouette vertex.

Since the backprojection source is a vertex (a point), the
determination of step 1820 is equivalent to finding a from-
point silhouette at a vertex of the current segment.

If, in decision step 1820, it is determined that no silhouette
vertex exists on the current segment, then process flow pro-

10

15

20

25

30

35

40

45

50

55

60

65

130

ceeds to step 1825, where the traversal of the 2D mesh pro-
ceeds to the next untraversed segment sharing a non-silhou-
ette vertex with the current segment, using a breadth-first or
flood-fill traversal of the 2D mesh.

If the current segment has a first-order silhouette vertex,
then the normal breadth-first or flood fill traversal of the 2D
mesh is not continued at a silhouette vertex. Instead, if in
decision step 1820, it is determined that the current segment
contains a first-order-silhouette vertex, then process flow pro-
ceeds to step 1845 to construct the backprojection wedge line
(BWL) incident on the first-order silhouette vertex by pivot-
ing to the corresponding supporting viewcell.

In step 1845, a wedge line (WL) is formed by pivoting a
line, initially colinear with the backfacing segment (as
defined above), wherein the pivoting is pivoting in a direction
away from the outside surface of the corresponding polygon,
to the source vertex.

Process flow proceeds from 1845 to step 1855, where the
WL generated in step 1845 is intersected with mesh triangle/
segments, all of which intersect the current wedge, in order to
find the closest from-point visible triangle that intersects the
current wedge. In one embodiment, this intersection of can be
determined using ray casting, with the BWL as the ray. In
some embodiments, techniques to accelerate this ray cast
determination, including the hierarchical spatial subdivision
of the triangle mesh database, as previously described, is
employed.

The point of intersection between the BWL and the closest
mesh triangle identified in step 1855 is a vertex or point
(2DDM_POINT) of the 2D conservative umbral discontinu-
ity mesh corresponding to the visibility from the source ver-
tex. Because this is a from-point visibility problem all such
2DDM_points are also BOB points.

Process flow proceeds from step 1855 to decision step 1880
to determine if any unprocessed/untraversed segments exist
in the current “traversal.” In this context, a (2D) “traversal” is
defined as a set of segments connected to the current segment
by non-silhouette vertices.

If, in decision step 1880, it is determined that there are
untraversed segments in the traversal, then process flow pro-
ceeds to step 1825, where the next untraversed segment is
processed.

If, on the other hand, it is determined in decision step 1880
that there are no unprocessed segments in the traversal, then
process flow proceeds to step 1883, where the segments con-
taining the BOB points generated by the current traversal are
restricted such that the portion of the segment on the “from-
vertex” occluded side of the BOB points are effectively
removed and the segment is terminated by the corresponding
BOB point.

These BOB points, added to a segment, are the same occlu-
sion boundaries that may be later identified during traversal of
a 2D mesh containing the segment for example in step 1815,
occlusion boundary.

In a subsequent step 1885, the traversal of the 2D mesh is
continued on the unoccluded side of the BOB points. Since
the BWL from one triangle/seg manifold may produce OB
points on a different (disconnected) triangle/seg manifold this
represents a continuation of the traversal on a newly con-
nected manifold (the backprojection polyline aggregate
umbra, or PLAU) formed by “occluder fusion™ of the two
manifolds by the BWL at the BOB point. (For a description of
occluder fusion in 3D, see Durand et al (2000)), the entire
contents of which are incorporated herein by reference.)
FIG. 19 3D Mesh Traversal

US 9,171,396 B2

131

Referring now to FIG. 19, and the related F1G. 20, and FIG.
21, the 3D mesh traversal process (traversal of 2-manifolds)
for constructing first-order from-viewcell visibility maps is
described.

The 3D mesh traversal process solves the 3D, from-view-
cell visibility problem. The output of the 3D mesh traversal
process is a conservative linearized umbral visibility map
comprised of from-viewcell unoccluded polygon fragments
constructed using conservative linearized umbral event sur-
faces (CLUES). As described, the CLUES correspond to
linearized, conservative visibility event surfaces or “wedges”
constructed, in some embodiments according the methods of
the exemplary flowcharts of FIG. 1, and FIGS. 3-6.

Unlike wedges used in the prior-art method of discontinu-
ity meshing, the CLUES or first-order wedges employed in
the present method are defined based on the conservative
model of first-order visibility propagation. In the first-order
visibility method, the structure of the wedge itself is defined
only by a silhouette feature of a polygon mesh and a viewcell
feature; geometry which intervenes between these two struc-
tures does not influence the structure of the first-order wedge.

The overall organization of the 3D mesh traversal method
is to conduct a traversal of the manifold mesh elements (e.g.,
triangles of manifold triangle meshes) in a way that insures
that, for any mesh element being traversed, all mesh elements
that can completely or partially occlude the mesh element
being traversed are first identified. These potentially occlud-
ing mesh elements are first processed (recursively by 3D
mesh traversal) before the traversal of the original mesh ele-
ment being traversed proceeds. During the 3D mesh traversal
process, the umbral event surfaces originating on these poten-
tially occluding mesh elements are constructed on the unoc-
cluded first-order silhouette edges of the potentially occlud-
ing elements. These event surfaces may intersect mesh
triangles causing umbral discontinuities which may corre-
spond to from-viewcell occlusion boundaries that can restrict
the traversal process.

This front-to-back processing order largely limits the con-
struction of visibility event surfaces (wedges) to those
wedges incident on visible silhouette edges, which decreases
the amount of time perform mesh traversal. This approach
also largely restricts traversal to unoccluded mesh triangles,
making the process output-sensitive in the number of ele-
ments actually visible from the viewcell. According to some
embodiments, an unoccluded element is partially occluded.

This is in contrast to the method of first-order conservative
umbral discontinuity mesh construction shown in FIG. 12 in
which first-order wedges are constructed on all first-order
silhouette edges, even first-order silhouette edges that are
occluded. In the output-insensitive method of FIG. 12, the
discontinuity mesh regions formed by these occluded first-
order silhouette edges are ultimately determined to be
occluded. However, since event surfaces are formed on all
first-order silhouette edges, all possible umbral discontinuity
mesh regions are formed and must later be examined for
actual from-region visibility in a post processing step in
which the arrangement of the discontinuity mesh is actually
determined.

In one embodiment of the present method, it is assumed
that the viewcell is convex. It is also assumed that the polygon
meshes are triangle meshes and that the triangle meshes are
manifold (each edge is shared by exactly two triangles). The
intersection of mesh triangles with wedges or UBPs may
produce more complex mesh polygons. These more complex
polygons can be converted to triangles using established
methods of polygon triangulation. (See M. de Berg, M. van
Dreveld et. al in “Computational Geometry Algorithms and

10

15

20

25

30

35

40

45

50

55

60

65

132

Applications, Springer c. 1997, page 45, the entire contents of
which are incorporated herein by reference). The triangle
mesh is represented as a directed graph. The method accom-
modates mesh polygons other than triangles, however the use
of triangles simplifies the traversal method. These assump-
tions simplify the implementation, however, other implemen-
tations which relax these assumptions are possible.

The output of the 3D mesh traversal process is a conserva-
tive visibility map comprised of from-viewcell visible mesh
polygons (and polygon fragments). These polygon frag-
ments, together with the umbral boundary polygons (UBPS)
incident on the from-viewcell silhouette edges, comprise the
boundary of the polyhedral aggregate umbrae (PAU) which is
the volume of space occluded from the viewcell, wherein the
occluded volume may be conservatively underestimated.
Individual 2-manifolds may be “fused” to other 2-manifolds
where UBPS from the closer manifold intersect a more dis-
tant manifold, thus realizing occluder fusion.

In the present method of 3D mesh traversal, this type of
occluder fusion can be identified without necessarily explic-
itly constructing the UBPS which correspond to wedges. In
the present method, it is only necessary to determine if a
discontinuity mesh segment, which corresponds to the inter-
section of a wedge with a triangle mesh, is otherwise
occluded from the viewcell. If so, this discontinuity mesh
segment is a segment of the PAU, and is therefore a from-
viewcell occlusion boundary. This approach has a lower com-
putational cost than explicitly constructing all the UBPS
(which requires wedge-wedge intersections).

As shown in subsequent FIG. 22, FIG. 23, and FIG. 24, the
explicit construction of UBPS corresponding to higher-order
or “adjusted” wedges is used to account for higher-order
visibility effects.

The process shown in FIG. 19 controls the initiation, reini-
tiation and halting of the main process of 3D traversal shown
in FIG. 20. These processes are similar to the corresponding
controlling and main processes of 2D traversal shown in FIG.
14 and FIG. 15 and previously discussed.

According to some embodiments, the process illustrated in
FIG. 19 starts at 1905 to select a seed triangle in a seed mesh.
The selection of a mesh and/or mesh triangle which is
“strongly visible” (no other triangles in the shaft formed by
the mesh/triangle and the viewcell) accelerates the overall
traversal process, but any mesh/triangle can be selected.

Once a seed triangle is selected, process flow proceeds to
1915 to initiate the main process of the 3D mesh traversal. An
embodiment of the main process of the 3D mesh traversal is
shown in detail in FIG. 20. Overall, the main 3D traversal
process shown in FIG. 20 is initiated by the controlling pro-
cess shown in FIG. 19. Moreover, in some embodiments, the
main process of the 3D traversal process (shown in FIG. 20)
can be suspended at specific triangles of the mesh (step 2030).
The process shown in FIG. 19 determines whether any sus-
pended traversals remain in the main 3D manifold traversal
process (step 1920) and whether the main process of the 9D
mesh traversal should be reinitiated on these suspended seg-
ments (steps 1930 and later).

If, in decision step 1920, it is determined that there are no
existing triangles on which the main part of the 3D mesh
traversal has been suspended, then process flow proceeds to
step 1925 in which the 3D mesh traversal for the wedge is
terminated, thereby completing the construction of the 3D
from-viewcell visibility map.

If, in decision step 1920, it is determined that there exist
triangles of the 3D mesh for which the main 3D mesh tra-
versal has been suspended (in step 2030 of FIG. 20), then
process flow proceeds to decision step 1930 to determine if

US 9,171,396 B2

133

any triangles exist in the shaft formed by the suspended
triangle (TRI) and the viewcell.

If, in decision step 1930, it is determined that there are no
triangles in the shaft between the suspended triangle and the
viewcell, then process flow proceeds to step 1960 to reinitiate
the 2D mesh traversal on the previously suspended segment.
The process flow terminates at 1960.

If, in decision step 1930, it is determined that there are
triangles in the shaft between the suspended triangle and the
viewcell, then process flow proceeds to step 1935 to deter-
mine if any triangles in the suspended triangle-viewcell shaft
are untraversed.

If, in decision step 1935, it is determined that untraversed
triangles exist in the suspended triangle-viewcell shaft, then
process flow proceeds to step 1440, where the 3D mesh tra-
versal is “jumped” or restarted on the closer untraversed
triangles/segments in the suspended triangle-viewcell shaft.
This step (which also occurs in step 2030 of the main 3D
traversal process shown in FIG. 20) insures that all potentially
occluding triangles have been processed before the traversal
is continued and before a decision to stop the traversal,
because the suspended triangle is completely occluded from
the viewcell, is made.

If, in decision step 1935, it is determined that no untra-
versed triangles exist in the SEG-VCE shaft, then process
flow proceeds to step 1945 to determine if a point on the
current (suspended) triangle is inside any polyhedral aggre-
gate umbrae (PAU), and therefore, conservatively occluded
from the viewcell. In some embodiments, this test employs a
modified point-in-polyhedron test shown in FIG. 25.

This modified point in polyhedron test uses first-order
event surfaces (first-order wedges) and, optionally, higher-
order umbral boundary polygons (UBPs). This test allows an
implicit solution to the point-in-polyhedron problem without
necessarily constructing the entire polyhedron. The details of
this test are given in conjunction with FIG. 25

If, in decision step 1945, it is determined that a point on the
suspended triangle is inside a PAU, then process flow pro-
ceeds to step 1950, where the traversal is not reinitiated on the
suspended triangle and the suspended triangle is no longer
labeled as suspended. Process flow terminates at 1950.

If, in decision step 1945, itis determined that the suspended
triangle is not inside any PAU, then process flow proceeds to
step 1960, which reinitiates the traversal on the suspended
triangle. Process flow terminates at 1960.

Ifno triangle of a mesh is part of a connected component of
visibility map (or PAU), then the entire mesh is either
occluded by the VM/PAU or not occluded by the VM/PAU.
Consequently, in some embodiments, to determine the vis-
ibility of all polygons of such a mesh, the visibility of only one
vertex of the mesh with respect to the specific completed
VM/PAU or corresponding connected component is deter-
mined using the method of FIG. 19 and e.g., FIG. 25. How-
ever, as described in detail elsewhere in this specification, by
using the 3D mesh traversal method in conjunction with a
large bounding box, or enclosing mesh object, containing all
of the model geometry, wherein the bounding box polygons
may be subdivided into smaller polygons, many of these tests
are naturally avoided.

FIG. 20A1 is a Flowchart Showing the Main Process of
Constructing a Conservative, Linearized, from-Viewcell Vis-
ibility Map Using 3D Mesh Traversal.

Turning now to FIG. 20A1, the main 3D mesh traversal
process begins with a breadth-first, or flood-fill traversal of a
manifold triangle or other polygon mesh as shown in the
initial step 2005. Alternate embodiments employ a depth-first
traversal. which also results in a flood-fill pattern of traversal

10

15

20

25

30

35

40

45

50

55

60

65

134

of the mesh. The initial triangle to seed the entire process is
selected in the controlling process shown in the flowchart of
FIG. 19.

In one embodiment, the mesh is a manifold triangle mesh
in which each edge is shared by exactly two triangles. Other
definitions of a mesh are also possible, including meshes
which are not closed. The intersection of mesh triangles with
wedges or UBPs may produce more complex mesh polygons.
These more complex polygons can be converted to triangles
using established methods of polygon triangulation. The tri-
angle mesh is represented as a directed graph. The method
accommodates mesh polygons other than triangles, however,
the use of triangles simplifies the traversal method. The
method of FIG. 20A1 employs a manifold triangle mesh in
which each edge is shared by exactly 2 triangles.

In some embodiments, the process flow illustrated in FI1G.
20A1 starts at 2005, where traversal of a triangle of the mesh
is indicated. Traversal can proceed in a breadth-first or flood-
fill graph traversal order. Using breadth-first traversal of the
triangle mesh, traversal spreads from the initiating triangle
outward forming layers of traversed triangles. Triangles con-
nected by non-silhouette edges are said to belong to the same
“traversal.”

Other traversal orders are possible. The triangle selected to
initiate the traversal of one or more polygon meshes does not
affect the output of the traversal. However, by selecting an
initial triangle that is completely visible and close to the
viewcell the process tends to perform better. In keeping with
the processes of a directed graph traversal, step 2005 indicates
that traversal is limited to untraversed triangles in the mesh.

Process flow proceeds to decision step 2010 to determine if
any untraversed triangles are within a 3D shaft formed by the
current triangle and the viewcell (this shaft is called a TRI-VC
shaft). Ifthere is one or more untraversed triangle in this shaft,
then process flow continues to step 2030 in which traversal is
immediately jumped to the closer untraversed triangle. In one
embodiment mesh polygons are organized using hierarchical
spatial subdivision structures. This allows the shaft test of
step 2010 to rapidly identify large groups of previously tra-
versed mesh polygons, by producing Log N performance for
the shaft test.

Step 2030 effectively enforces a strict front-to-back pro-
cessing of mesh elements for a single mesh or for multiple
mesh objects. The process of jumping the traversal to a closer
potentially occluding triangle can result in endless cycles
caused by cyclic overlap of triangles. Such cycles are also
encountered in Weiler-Atherton visibility algorithm and can
be detected and eliminated by maintaining a directed graph
representation of the overlap relationships. This method is
presented in FIG. 13 and discussed in detail in connection
with that figure.

Step 2030 insures that the event surfaces originating on
closer untraversed triangles in the triangle-viewcell shaft of
the current triangle are identified and constructed prior to a
traversal of the current triangle. These event surfaces may be
from-viewcell occlusion boundaries (determined for these
closer silhouette edges in steps 2040-2045) which restricts
traversal of the current triangle (steps 2035). By forcing a
jump to the closer untraversed triangles/silhouette edges, step
2010 insures that any from-viewcell occlusion boundaries
that could restrict traversal of the current triangle are con-
structed prior to traversal of the current triangle. Process flow
suspends at 2030, reinitiating at a closer, untraversed mesh
triangle in the triangle-viewcell shaft.

If there are no untraversed triangles in the TRI-VC shaft,
then process flow proceeds to decision step 2015 to determine
if the current triangle being traversed contains a from-view-

US 9,171,396 B2

135
cell (FROM-VC) occlusion boundary. Umbral discontinuity
mesh (DM) segments generally form polylines at the inter-
section of a mesh triangle with wedges. Each DM segment is
the intersection of a wedge and a triangle wherein the segment
is conservatively visible from the wedge’s supporting view-
cell element (vertex or edge). This is called an “on-wedge”
visible intersection. The on-wedge visible segments are con-
servatively visible because they are determined (in the 2D
mesh traversal process of FIG. 15) using from-viewcell sil-
houette vertices (not “from-wedge’s supporting viewcell ele-
ment” silhouette vertices). Since a segment may actually be
backfacing relative to the wedge’s supporting viewcell ele-
ment, but frontfacing (and hence visible) from the viewcell;
some segments that are actually backfacing from the wedge’s
supporting viewcell vertex may be included as DM segments.

On-wedge visible intersections, or discontinuity mesh seg-
ments, are identified in the later step 2042 by the 2D mesh
traversal described in FIG. 15 and related figures.

The DM_SEGS comprise the polylines of the conservative
linearized umbral discontinuity mesh. These polylines may or
may not be actual from-viewcell (FROM-VC) occlusion
boundaries (the boundary separating polygon fragments that
are conservatively visible from the viewcell and polygon
fragments that are occluded from the viewcell, wherein the
size of the umbral volume is conservatively underestimated).
Each DM_SEG may or may not be a from-viewcell occlusion
boundary (OB_SEG). An OB_SEG is an actual edge of a
from-viewcell umbral boundary polygon (UBP) which is a
face of a from-viewcell polyhedral aggregate umbra (PAU).

From-viewcell occlusion boundaries encountered in step
2015 are discontinuity mesh (DM) polyline segments
(DM_SEG) that have been determined to be from-viewcell
occlusion boundary segments (OB_SEG) in step 2044. The
details of step 2044 are presented later. Step 2044 determines
which DM polyline segments are from-viewcell occlusion
boundaries and is actually performed before a from-viewcell
occlusion boundary would be encountered later in step 2015.

The “on-wedge” visible intersection of a mesh triangle
with a wedge represents a segment of the umbral discontinu-
ity mesh which may or may not correspond to a from-viewcell
occlusion boundary (OB). Each DM polyline is determined to
be a from-region occlusion boundary (or not) in step 2044 and
the result is stored with the DM polyline. Since each DM
polyline is processed by step 2044 prior to it being encoun-
tered in steps 2015 the information required for the decision
in step 2015 was previously determined and stored for the
encountered DM polyline segment in step 2044.

If, in decision step 2015, it is determined that the current
triangle does contain an occlusion boundary (OB) segment,
then process flow proceeds to step 2035 to interrupt the tra-
versal of the current 3D mesh at the OB segment (OB_SEG).
Traversal may continue across other non-OB segments of the
triangle. Process flow interrupts at 2035. In further embodi-
ments, process flow proceeds from 2035 to process 20-1,
which returns the process flow to step 2025. The mesh tra-
versal can then proceed across other mesh triangle edges that
are not occlusion boundary segments.

If, in decision step 2015, it is determined that the current
triangle does not contain an OB segment, then process flow
proceeds to step 2020 to determine if the current triangle has
a silhouette edge. This determination is based on the test for
a first-order, from-viewcell silhouette edge shown in FIG. 3.

If, in decision step 2020, it is determined that the current
triangle does not have a silhouette edge, then process flow
proceeds to step 2025, where the next untraversed triangle in
the breadth-first traversal of the directed graph corresponding
the manifold triangle mesh.

10

15

20

25

30

40

45

50

55

60

136

If, in decision step 2020, it is determined that the triangle
being processed does contain a silhouette edge, then process
flow proceeds to step 2040, where the breadth-first traversal
of the directed graph corresponding to the triangle mesh is
stopped at the silhouette edge and primary wedges are con-
structed incident on the silhouette edge using the first-order
method of pivot and sweep method of wedge construction
(FIG. 1-FIG. 6). The primary wedges so constructed are
added to alist called the WEDGE_LIST. The primary wedges
are those wedges constructed on encountered first-order sil-
houette edges using the pivot and sweep method. On initial
construction, in some embodiments, all wedges are initial
wedges which have not yet been further restricted by an
on-wedge visibility step. The construction of the initial pri-
mary wedges in step 2045 corresponds to the initial primary
wedge construction shown in step 1210 in FIG. 12. The out-
put-insensitive method.

Alternate embodiments are possible in which the first-
order wedges (constructed in step 2040 and the later step
2043) are not constructed using the pivot-and-sweep method
of'the present embodiments but instead using the less precise
method of extending the SV-ME wedge planes to intersection
(as described by Teller et. al, 1992, where such planes were
generated only on portal sequence edges). The present
embodiments include a technique in which the difference in
the umbral volumes produced by the pivot-and-sweep
method and the intersecting planes method can be estimated
at an inside-corner vertex. In this technique (discussed in
detail in FIG. 20B), the method used to construct the continu-
ous conservative umbral event surface incident on the inside
corner vertex is selected based on a heuristic which balances
the desired precision against the increased complexity of the
resulting visibility map that results from the additional SE-
MYV occlusion boundary segments.

Process flow proceeds from step 2040 to step 2041, where
wedges in the WEDGE_LIST are selected and submitted to
subsequent processing steps 2042 through 2045.

Process flow proceeds to step 2042, which is a first step of
the processing of wedges in the WEDGE_LIST where the
on-wedge visible segments of mesh triangles intersecting the
wedge are determined.

An efficient, output-sensitive 2D mesh traversal solution to
this on-wedge visibility problem is presented in FIG. 15. The
method of FIG. 15 is actually a 2D implementation of the
method shown in the current figure FIG. 20. In step 2042, in
some embodiments, the on-wedge visible segments are stored
as discontinuity mesh segments (DM_SEGS). This method of
on-wedge visibility determination also identifies the com-
pound silhouette vertices (CSVS) that are required for the
subsequent step 2043.

Process flow proceeds from step 2042 to step 2043, to
construct secondary wedges at the CSVs identified on each
wedge during the earlier step 2042. A CSV is generated
during step 2042 at any on-wedge visible intersection of the
wedge with a first-order from-viewcell silhouette edge, as
identified in the earlier step 2042. Each CSV is an on-wedge
visible point of intersection of a wedge and a first-order
silhouette edge. These points correspond to t-junctions of the
compound from-region silhouette contour.

In step 2043, according to some embodiments, SE-MV
wedges are constructed on each of the CSVs identified. These
wedges originating on a CSV are called secondary wedges.
These wedges are constructed using the sweep operation of
the pivot-and-sweep method of wedge construction. All of
these wedges generated in this step are SE-MV type, gener-
ated in the sweep process. The sweep is conducted between
the SVVS of'the original wedges intersecting at the CSV. The

US 9,171,396 B2

137
wedges constructed by the sweep process form a continuous,
conservative umbral surface which connects the original
wedges intersecting at the CSV. In alternate embodiments,
the two original wedges can be extended to intersection,
forming a less precise, but still conservative umbral boundary.

As previously defined, each CSV corresponds to the inter-
section of a wedge and another wedge which is supported on
the intersected silhouette edge. These wedges intersect at the
point of the CSV.

It both SV-ME wedges intersecting at the CSV pivot to the
same viewcell vertex, then the two wedges exactly intersect at
their edges and no new SE-MV wedge is constructed.

If the two wedges intersecting at a CSV are formed by
pivoting to two vertices of the same viewcell edge, then the
result of pivot-and-sweep construction on the CSV is a single
SE-MV wedge. In this case, if the two original wedges inter-
secting at the CSV are SV-ME type, then the connecting
SE-MV wedge constructed at the CSV conservatively
approximates the quadric formed by a viewcell edge (con-
necting the two supporting viewcell vertices) and the two
SV-ME silhouette edges corresponding to the intersecting
wedges of'the CSV. The single SE-MV wedge, constructed on
the CSV in this case, conservatively approximates the corre-
sponding quadric formed by the S-EEE event. In fact, the
constructed SE-MV triangle can be interpreted as a degener-
ate quadric having infinite pitch.

If the two wedges intersecting at the CSV are formed by
pivoting to vertices belonging to different viewcell edges,
then the result of pivot-and-sweep construction on the CSV is
an edge-connected sequence of SE-MV wedges. In this case,
if the two original wedges intersecting at the CSV are SV-ME
types, then the set of connecting SE-MV wedges constructed
on the CSV conservatively approximates the quadrics formed
by the connected viewcell edges and the two other silhouette
edges corresponding to the intersecting SV-ME wedges of the
CSV. Once again, each of the SE-MV wedges can be consid-
ered to be a corresponding degenerate quadric with infinite
pitch.

Secondary wedges may also be generated at a CSV corre-
sponding to the intersection of a SE-MV wedge with a from-
viewcell silhouette edge.

All secondary wedges (those incident on CSVs) con-
structed in step 2043 are added to the WEDGE_LIST, which
means that they will ultimately be processed by step 2042 to
find on-wedge visible segments.

Process flow proceeds from step 2043 to decision step 2044
to determine if the DM_SEG is occluded from all other
“parts” of the corresponding viewcell, except the supporting
viewcell structure (vertex or edge) supporting the wedge con-
taining the DM_SEG. An embodiment of this test is disclosed
in FIG. 21. Briefly, the test involves intersecting the
DM_SEG with all potentially intersecting wedges already
constructed and then determining, by the modified point-in-
polyhedron test, if the resulting subsegments are inside the
from-viewcell PAU.

If the DM_SEG is otherwise occluded from all other parts
of the viewcell (except the SVV supporting the DM_SEG’s
wedge), then the DM_SEG is an actual from-viewcell occlu-
sion boundary (OB) corresponding to an edge of the from-
viewcell PAU.

10

15

20

25

30

35

40

45

50

55

60

65

138

Thus, if in decision step 2044, it is determined that the
DM_SEG is otherwise occluded from the viewcell (using the
process of FIG. 21), then process flow proceeds to 2045,
where the DM_SEG is added to the intersected triangle as an
OB_SEG.

If, on the other hand, the DM_SEG is not otherwise
occluded from all other parts of the viewcell, then the
DM_SEG is not an actual from-viewcell occlusion boundary
(OB) and process flow proceeds to step 2046 to determine if
any unprocessed wedges remain in the WEDGE_LIST. If; in
decision step 2046, it is determined that unprocessed wedges
remain in the wedge list, then process flow returns to step
2041.

If, on the other hand, it is determined in step 2046 that no
unprocessed wedges remain in the wedge list, then process
flow proceeds to step 2047 to determine if any unprocessed
triangles exist in the current “traversal” (the set of triangles
connected to the current triangle by non-silhouette edges). If
in decision step 2047 it is determined that un-traversed tri-
angles exist in the traversal (the set of triangles connected to
the current triangle by non-silhouette edges), then process
flow proceeds to step 2025, where the next untraversed tri-
angle is processed.

If in decision step 2047 it is determined that no un-tra-
versed triangles exist in the traversal, then process flow pro-
ceeds to step 2048, where those triangles intersected by the
OB segments generated in the current traversal are identified
and retriangulated using the intersecting OB segments. This
step can effectively restrict the 3D mesh traversal at occlusion
boundaries when later encountered in step 2015, and thereby
limit the traversal to non-occluded regions, further enforcing
the output-sensitive character of the method.

Process flow proceeds to step 2049 to continue the traversal
of'the 3D mesh i on the unoccluded side of the OB segments
generated from the traversal. Process flow terminates at 2049.
Since the wedges from one 2-manifold may produce OB
points on a different (disconnected) 2-manifold this repre-
sents a continuation of the traversal on a newly connected
manifold (part of the PAU) formed by “occluder fusion” of
the two manifolds by the wedge line at the OB segment.

As previously described, in one embodiment of the present
method, the entire set of triangle mesh objects is contained by
an enclosing mesh object. This enclosing mesh object is simi-
lar to a “skybox” commonly used to surround mesh objects
for interactive visualization applications. The present method
of mesh traversal in 3D treats the enclosing skybox mesh as
any other triangle mesh manifold, except that the viewcells
are inside the enclosing mesh object. FIG. 20K shows such an
enclosing mesh object, labeled SKYBOX which contains
other polygon meshes. The arrows labeled NORMAL indi-
cate that, unlike other polygon meshes, the enclosing mesh
has all mesh polygons oriented so that their normals are
locally directed toward the inside of the mesh. Other details of
FIG. 20K are discussed in conjunction with that figure.

This approach insures that the traversal continues an omni-
directional traversal of the entire database even where other
mesh objects are not present in the database. The use of this
enclosing mesh helps make the current method output-sensi-
tive. That is, since only the encountered unoccluded meshes
are processed, there is no need to process each mesh in the
database. Moreover, the present method will naturally iden-

US 9,171,396 B2

139
tify the unoccluded regions of the skybox itself, which,
because of'its size and position is typically otherwise a source
of significant overdraw.

In summary, the overall structure of the method outlined in
FIG. 19, FIG. 20, and the related FIG. 21 is that of a coherent
breadth-first manifold traversal, which is interrupted by one
of three conditions: 1) untraversed potentially occluding
mesh triangles (step 2010), 2) the presence of a from-viewcell
occlusion boundary in the triangle (step 2015), or 3) the
presence of a first-order silhouette edge on the triangle (step
2020).

Step 2010 insures a strict front-to-back processing of the
manifolds. Step 2015 together with step 2049 prevent tra-
versal from proceeding on regions of the mesh that are actu-
ally occluded. Together, these steps produce output-sensitive
performance by preventing many occluded mesh triangles
and their silhouette edges from being processed.

5

10

15

140

Step 2020 identifies visible silhouette edges and begins the
process of generating the primary wedges and associated
secondary wedges (at CSVs) and establishing the on-wedge
visible segments of intersection between these wedges and
the mesh triangles. These visible segments become the seg-
ments of the conservative first-order umbral discontinuity
mesh that are subsequently tested (step 2044, with the details
of'the test shown in FIG. 21) to determine if they correspond
to from-viewcell occlusion boundaries which are included in
the visibility map.

The similarity between the 2D and 3D mesh traversal
methods is evident when comparing FIG. 14 to FIG. 19, FIG.
15 to FIG. 20A1, and FIG. 16 to FIG. 21. These similarities
are also detailed in Table VII (aspects of 3D traversal), Table
Vllla (aspects of 2D traversal), and Table VIIIb (aspects of 1D
traversal or ray casting).

Comparing Aspects of 3D Mesh Traversal, 2D Mesh Tra-
versal, and 1D Mesh Traversal (Ray Casting)

TABLE VII

Aspects of 3D Mesh Traversal Method Used in From-Viewcell Mesh Traversal, Conservative
Point-Occlusion (From-Viewcell) Query, and From-Silhouette Edge Backprojection

3D Traversal

Silhouette Edges Mesh Polygons Used ~ Output

From-Viewcell

Manifold Traversal

Is Point Occluded from

Viewcell Query
a. Vis_Seg From-

From-Viewcell Entire Set of Meshes ~ From-VC Visibility

Map

From-Viewcell Conservatively Result: Point Occluded
Overestimated From- from Viewcell or Not
Viewcell Visible

Viewcell Fragments in Point-
Viewcell Shaft
Backprojection Query
b. Initial Triangle in 3D
Mesh Traversal Query
From-Silhouette-Edge/ From-Viewcell Conservatively 2 VSVSCs for adjacent
Subsegment (3D Overestimated From- segments
Manifold Traversal Viewcell Visible (conservatively
Backprojection Fragments in Edge- connected by convex
Calculation for Higher- Viewcell Shaft hull)
Order Visibility)

TABLE VIII

Aspects of 2D Mesh Traversal Method Used in On-Wedge Visibility, Conservative
Point-Occlusion (From-Edge) Query, and From-Silhouette Vertex Backprojection

2D Traversal (On-

2D Mesh Polylines

Wedge Visibility) Silhouette Points Used Output

From Viewcell-Vertex From-Point Entire Set of Meshes ~ From Viewcell-Vertex
Visible Segments

SE-ME From Viewcell- From-Edge Entire Set of Meshes ~ From Viewcell-Edge

Edge

Is Point Occluded from From-Edge Conservatively Result: Point is

Edge Query Overestimated From- Occluded from Edge or

a. Vis__Seg From-Edge Edge Visible Segments Not

Backprojection Query in Point-Edge Shaft

b. Initial Segment in

Polyline From-Viewcell

Edge Query

From Silhouette Vertex ~ From-Edge Conservatively From-Silhouette-Vertex

2D Manifold Traversal

Overestimated From-

Visible Supporting

(2D Backprojection Edge Visible Segments Vertex on Source Edge
Calculation for Higher- in Point-Edge Shaft
Order Visibility in

Plane)

US 9,171,396 B2

141
TABLE VIIIb

Aspects of 1D Mesh Traversal (Ray Casting)

Silhouette
Points

1D Traversal
(Ray Cast)

2D Mesh Polylines

Used Output

Is Point Occluded From-Point Conservatively Result: Point is

From Point Query Overestimated From- Occluded from
a. Vis-Point Edge Visible Segments Point or Not
Backprojection in Point-Edge Shaft

Query

b. Initial Segment
In Polyline From-
Viewcell-Point

FIG. 20B Method of Using an Estimate of Difference in
Umbral Volumes Produced by the Pivot-and-Sweep Method
and the Intersecting Planes Method, Estimated at an Inside-
Corner Vertex; and the Difference Used to Determine the
Method of Constructing the Continuous Umbral Event Sur-
face at the Inside-Corner Vertex.

According to some embodiments, the process illustrated in
FIG. 20B starts at step 2050 upon encountering a simple
inside corner silhouette vertex or a compound silhouette ver-
tex (CSV). In embodiments, this occurs at step 2020 and 2042
of FIG. 20.

Process flow proceeds to step 2051 to construct a line is by
interesting the planes of the SV-ME wedges adjacent to the
silhouette vertex. Also in step 2051, the edges of the SE-MV
wedges incident the inside-corner silhouette vertex are con-
structed and the SE-MV edge forming the smallest angle with
the intersecting-planes line is determined. In one example,
shown in FIG. 9D, this angle is the angle produced by the line
L1 (line of intersecting planes) and line 1.2, which is an edge
of the corresponding SE-MV wedge. The angle being mea-
sured from the intersection point of these two lines at the
vertex ICSV. This smallest angle is stored in the variable
DIFF_ANGLE

Process flow proceeds to decision step 2052 to determine if
the angle DIFF_ANGLE exceeds a predetermined value.

I, in decision step 2052, it is determined that the DIF-
F_ANGLE is greater than a predetermined value, then pro-
cess tlow proceeds to step 2053 to construct the SE-MV event
surfaces incident on the inside-corner simple or compound
silhouette vertex. Process flow terminates at 2053.

I, in decision step 2052, it is determined that the DIF-
F_ANGLE is not greater than a predetermined value, then
process flow proceeds to step 2054, where the continuous,
conservative umbral event surface incident on the inside-
corner simple or compound silhouette vertex is constructed
by intersecting the planes of the adjacent SV-ME wedges.
Process flow terminates at 2054.

FIG. 20C through FIG. 20J are diagrams of polygon
meshes and a viewcell. These diagrams are used to illustrate
and example of one embodiment of the process of 3D mesh
traversal shown in flowchart FIG. 20A1, and related figures.

FIG. 20C through FIG. 20J are diagrams showing two
polygon meshes and a viewcell from two different perspec-
tives. In the top figures of each drawing (FIG. 20C, FIG. 20E,
FIG. 20G, FIG. 201), the structures are viewed looking from
the polygon meshes toward the viewcell. In the bottom figures
(FIG. 20D, FIG. 20F, FIG. 20H, FIG. 20J), the perspective
view is generally looking from the viewcell toward the poly-
gon meshes.

The process of FIG. 20A1 assumes selection of an initial
triangle to start the 3D mesh traversal. F1G. 20C and F1G. 20D
show an example in which the triangle labeled TB1 is selected
as a starting triangle. TB1 is a mesh polygon of the polygon

10

15

20

25

30

35

40

45

50

55

60

65

142

mesh labeled MESH-B. In this example, the embodiment
employs breadth-first traversal, although other traversal
orders are possible.

Decision step 2010 of FIG. 20A1, determines if any untra-
versed triangles are within a 3D shaft formed by the current
triangle and the viewcell. FIG. 20E and FIG. 20F show a 3D
shaft formed between the triangle TB1 and the viewcell. This
triangle-viewcell shaft is labeled TRI-VC-1 and shown in
darker depiction. In this case, the triangle-viewcell shaft is
formed by 8 triangles. In some embodiments, the shaft is the
convex hull between the triangle and the viewcell. Prior-art
methods of convex hull construction can be employed to
construct the shaft between a triangle and a viewcell, or any
other convex view region. (See O’Rourke, Computational
Geometry in C Second edition Cambridge University Press
1998, the entire contents of which are incorporated herein by
reference). In one embodiment, the pivot-and-sweep method
described in conjunction with FIGS. 1-5 and related figures is
adapted to construct this shaft by additionally constructing
SE-MV supporting polygons also on outside corners of the
mesh.

FIG. 20E and FIG. 20F show that shaft TRI-VC-1 inter-
sects other mesh triangles including triangle TA1 belonging
to MESH-A. In this example, process flow proceeds to step
2030 of FIG. 20A.

In this example, in step 2030 the traversal of MESH-B is
suspended and the mesh traversal is reinitiated at triangle
TA-1, which intersects the shaft TRI-VC-1.

Having reinitiated the breadth-first traversal at triangle
TA1, process flow returns to step 2005, encounter of an untra-
versed triangle.

Process flow proceeds to decision step 2010 which, in this
example, detects any unprocessed mesh triangles in a shaft
formed between triangle TA1 and the viewcell. In this
example, the shaft between triangle TA1 and the viewcell is
empty, allowing process flow to proceed to decision step
2015.

Decision step 2015 determines, in this example, if triangle
TA1 contains any from-viewcell occlusion boundaries. Since
triangle TA1 does not contain from-view cell occlusion
boundaries, process flow proceeds to step 2020 to determine
if triangle TA1 has any first-order from-viewcell silhouette
edges.

Since, in this example, triangle TA1 does not have any
first-order silhouette edges, process flow proceeds to step
2025 to identify the next un-traversed triangle in the polygon
mesh.

In this example, the breadth-first traversal proceeding from
triangle TA1 in step 2025 encounters edge-connected triangle
TA2. Step 2010, determined for triangle TA2 would indicate
no mesh polygons in the triangle-viewcell shaft formed
between TA2 and the viewcell shaft.

Step 2015, in this example, indicates no occlusion bound-
ary edges incident on triangle TA2 allowing process flow to
proceed to step 2020 where it is determined that triangle TA2
has a first-order silhouette edge, labeled E2.

Process flow proceeds to step 2040 in FIG. 20A1. In this
example, execution of step 2040 results in the construction of
awedge on edge E2. The first-order, pivoted (SV-ME) wedge
constructed in step 2040 on first-order silhouette edge E2 in
this example is shown in FIG. 20G and FIG. 20H as labeled
wedge W2. Wedge W2 is a pivoted (SV-ME) wedge which is
constructed in step 2040 using the method for constructing
pivoted wedges as described in FIG. 4 and related figures. The
supporting viewcell vertex for the construction of W2 in this
example is the viewcell vertex labeled SVV.

US 9,171,396 B2

143

Process flow proceeds to step 2041 in FIG. 20A1, in this
example resulting in the processing of wedge W2 in step
2042. In step 2042, the on-wedge visible segments are deter-
mined. In one embodiment, this determination employs the
2D version of the mesh traversal method as described in FIG.
15 and related figures. In this example, the result of the
on-wedge, from-point (from SVV, in this example) visible
segment determination for wedge W2 is the discontinuity
mesh segment (DM_SEG) labeled OBE1. OBET1 is, in this
example, the only intersection of wedge W2 that is visible
from SVV.

Having determined the DM_SEG, OBE1 in this example,
process flow proceeds to step 2043 where it is determined, in
this example, that the primary wedge W2 does not intersect
any first-order silhouette edges. Consequently, in this
example no compound silhouette vertex (CSV) is produced
and no secondary wedges need to be constructed.

Process flow proceeds to decision step 2044 to determine,
in this example, if DM_SEG OBE1 is otherwise visible from
the viewcell. This test determines if the DM_SEG OBE1 is an
actual from-viewcell occlusion boundary segment. In one
embodiment this test employs the process of FIG. 21A and
related figures which involves constructing a 3D shaft
between the DM_SEG and determining if there are any un-
traversed mesh polygons in this shaft as indicated in step
2110. In this example the 3D shaft between OBE1 and the
viewcell is shown as labeled shaft SEG-VC-1. Following the
process flow of flowcharts FIG. 24A, FIG. 24B, in one
embodiment; in the example of OBE1 the process would
identify no other wedges in shaft SEG-VC-1 which would
potentially subdivide OBE1. Further, conducting the modi-
fied point-in-polyhedron test of FIG. 25 using a point on the
DM_SEG OBEL, in this example; it would be determined that
the DM_SEG OBEL1 is actually a from-viewcell occlusion
boundary segment and therefore would be added to polygon
POLY3, in this example, repartitioning the original polygon
POLY3 (a quadrangle in this case), shown in FIG. 20C and
FIG. 20D into the polygon POLY3R.

Continuing processing by the embodiment of FIG. 20A1,
all of the visible triangles of MESH-A will be traversed, in
this case the traversed set of mesh triangles of MESH-A
corresponding to all mesh triangles that are front facing for at
least one view cell vertex. Eventually the breadth-first tra-
versal is interrupted at the first-silhouette contours of MESH-
A, which include E2, which induces occlusion boundary
OBE1 on MESH-B. First-order silhouette edge E3 (shown in
FIGS. 201 and 20J) likewise, in this example induces occlu-
sion boundary edges OBE2 (shown in FIG. 20J) and OBE3
(shown in FIG. 201 and FIG. 20J) on MESH-B.

These occlusion boundary edges comprise a continuous
occlusion boundary that subsequently limits the traversal of
MESH-B POLY3 (where it has been repartitioned at OBE1)
as well as other polygons of MESH-B, at occlusion boundary
edge OBE2 and occlusion boundary OBE3. After the retrian-
gulation step 2048, mesh traversal continues on MESH-B
only on the unoccluded side of this occlusion boundary, as
indicated by step 2049.

FIG. 20K is a perspective diagram showing the same view-
cell and polygon meshes MESH-A and MESH-B as in FIGS.
20C-20J. In addition FIG. 20K shows an enclosing polygon
mesh labeled SKYBOX. The polygons of the enclosing mesh
that are backfacing with respect to the viewpoint in this per-
spective diagram are not shown so that the viewer can see
inside the enclosing mesh labeled SKYBOX. This enclosing
mesh contains the viewcell and the other polygon meshes.
The arrows labeled NORMAL indicate that, unlike other
polygon meshes, an enclosing mesh has all mesh polygons

10

15

20

25

30

35

40

45

50

55

60

65

144

oriented so that their normals are locally directed toward the
inside of the mesh. Wedges that intersect no other polygon
mesh will ultimately intersect the enclosing mesh. A wedge-
enclosing mesh intersection is processed as any other wedge-
mesh intersection according to the exemplary flowchart of
FIG. 20A, with determination of whether the wedge-mesh
intersection is a from view region occlusion boundary (step
2044), and ultimately mesh traversal occurring on the unoc-
cluded side of an occlusion boundary (step 2049), the tra-
versal occurring on the inside facing side of the enclosing
mesh, here labeled SKYBOX.

FIG. 20L and FIG. 20M illustrate specific steps in the 3D
mesh traversal process of FIG. 20A2, in which mesh traversal
is constrained by an equivalent conservative from viewcell
frustum (ECFVF) which reflects directional constraints and/
or motion path constraints imposed on a viewpoint while it is
within a specific viewcell.

FIG. 20L shows a view of the same viewcell and mesh
objects as FIG. 20G, and from a similar perspective. FIG. 20L
also shows an ECFVF, which reflects directional constraints
on a view direction vector while the viewpoint is within the
viewcell.

FIG. 20M shows a view of the same viewcell and mesh
objects as FIG. 20H, and from a similar perspective. FIG.
20M also shows an ECFVF.

In decision step 2065 of FIG. 20A2 it is determined if the
triangle being traversed contains an occlusion boundary, e.g.
OBE]1 (similar to step 2015 of FIG. 20A1) and additionally it
is determined if the triangle is subject to a containment
boundary that results from the intersection the traversed tri-
angle with an ECFVF. In FIG. 20L triangle TA3 contains a
containment boundary which is a segment of the containment
line CB1 formed by the intersection of mesh triangles belong-
ing to MESH-A with the ECFVF. This containment boundary
CB1 is shown as a dashed line. In the case of triangle TA3, this
containment boundary prevents traversal to the third edge of
the triangle, which is completely on the other side of the
containment boundary CB1 since it is entirely outside the
ECFVFE.

FIG. 20M shows a triangle of MESH-A, TA4, that is com-
pletely outside the ECFVF and therefore not traversed
because traversal is suspended at decision step 2065 of FIG.
20A2, which prevents this triangle from being encountered.

FIG. 21A, and FIG. 21B is a flowchart of a method to
Determine if Discontinuity Mesh Segment is Otherwise
Occluded From the Viewcell (i.e. Is Discontinuity Mesh Seg-
ment a From-Region Occlusion Boundary)

In the main 3D mesh traversal process shown in FIG. 20,
step 2044 is a decision test to determine if a 2DDM_SEG is
occluded from all other “parts” of the viewcell. FIG. 21
illustrates an embodiment of this test.

Insome embodiments, a discontinuity mesh (DM) segment
is a from-viewcell occlusion boundary if no part of the view-
cell is visible from the DM segment except the supporting
viewcell element used to construct the wedge corresponding
to the DM segment. In the present method, the test can be
organized as a backprojection-type visibility query using the
DM segment as a lineal lightsource and determining the vis-
ibility of the viewcell.

This test is shown in FIG. 21.

According to some embodiments, the process illustrated in
FIG. 21 starts at decision step 2110 in which a 3D shaft
between the DM_SEG being tested and the viewcell is
employed (DM_SEG-VIEWCELL shaft).

If, in decision step 2110, it is determined that there are
untraversed triangles in the DM_SEG-VC shaft, then process
flow proceeds to step 2115 to suspend the process and the

US 9,171,396 B2

145

main part of the 3D mesh traversal process is jumped to the
closer untraversed triangles in the DM_SEG-VC shaft. This
jump insures that all of the potentially occluding geometry
that can influence the DM_SEGs status as a from-viewcell
occlusion boundary is identified and processed prior to con-
ducting the backprojection test which actually determines if
the DM_SEG is a from-viewcell occlusion boundary (OB).
Process flow terminates at step 2115.

If, in decision step 2110, it is determined that no untra-
versed triangles exist in the DM_SEG-VC shatft, then process
flow proceeds to step 2120, where the DM_SEG s intersected
with other wedges in the DM_SEG-VC shaft. This intersec-
tion may subdivide the original DM_SEG into a plurality of
DM_SUBSEGS, each having a uniform from-viewcell vis-
ibility.

Process flow proceeds to decision step 2125 to determine if
the current DM_SEG or DM_SUBSEG is directly connected
to a DM_SEG or DM_SUBSEG for which the from-viewcell
visibility status (otherwise occluded or otherwise unoc-
cluded) has been determined.

If, in decision step 2125, it is determined that the current
DM_SEG or DM_SUBSEG is directly connected to a
DM_SEG or DM_SUBSEG for which the from-viewcell
occlusion status has been definitively determined, then pro-
cess flow proceeds to step 2130, where the occlusion status of
the current DM_SEG or DM_SUBSEG is set to the same
status of the DM_SEG or DM_SUBSEG having a known
from-viewcell visibility status and to which the current
DM_SEG or DM_SUBSEG it is directly connected and this
status is returned to the calling function. Process flow termi-
nates at step 2130.

If, in decision step 2125, it is determined that the current
DM_SEG or DM_SUBSEG is not directly connected to a
DM_SEG or DM_SUBSEG having a known from-viewcell
visibility status, then process flow proceeds to step 2135 to
select a point on the DM_SUBSEG.

Process flow proceeds to step 2140 a shaft is formed
between the point selected in step 2135 and the viewcell and
processing proceeds to step 2145, where all wedges in the
DM_SEG-VC shaft are identified and placed in a list WLIST
for later processing. These are the wedges generated in the
steps 2040 and 2043 of FIG. 20, the main 3D mesh traversal
process which generates frontprojection, first-order wedges.

Process flow proceeds to step 2148, where each wedge in
the WLIST is processed by subsequent steps.

Process flow proceeds to step 2150, where for each wedge
in the WLIST, it is determined if the wedge is a first-order-
wedge or a higher-order wedge. The main 3D mesh traversal
process of FIG. 20 generates first-order wedges using the
pivot and sweep construction of wedges at steps 2040 and
2043. Higher-order wedges can optionally be constructed
using the backprojection process detailed in a later part of this
specification in conjunction with FIG. 22, FIG. 23, and FIG.
24. According to some embodiments, the order of a wedge is
determined according to the process used to construct the
wedge. For example, a wedge constructed using the back-
projection process is a higher order wedge, and a wedge that
is not constructed using the backprojection process is a first
order wedge. If, in decision step 2150 it is determined that the
wedge is a higher-order wedge, then process flow proceeds to
step 2155.

If, on the other hand, in decision step 2150 it is determined
that the wedge is a not a higher-order wedge then process flow
proceeds directly to step 2158.

In step 2155, the actual from-viewcell umbral boundary
polygon (UBP) corresponding to the higher-order wedge is
constructed by intersecting the higher-order wedge with all

5

10

15

20

25

30

35

40

45

50

55

60

65

146

other wedges and UBPS that are in both the wedge-viewcell
(WEDGE-VC) shaft and the point-viewcell shaft. This pro-
cess effectively constructs, for a higher-order wedge identi-
fied in step 2150, that portion of the corresponding UBP that
is inside the point-viewcell shaft. A UBP can be constructed,
in some embodiments, from the corresponding wedge by
intersecting it with all other wedges/UBPs in the shaft formed
between the wedge and the viewcell. After step 2155, process
flow proceeds to step decision step 2158 to determine if the
WLIST is empty. If the WLIST is empty, then process flow
returns to step 2148 where the next wedge in the WLIST is
subjected to subsequent processing.

If, in decision step 2150, it is determined that the wedge is
a first-order wedge, then process flow proceeds directly to
step decision step 2158, described above.

If, in decision step 2158, it is determined that the WLIST is
empty, then process flow proceeds to step 2160, where the
DM_SUBSEG point selected in step 2135 is subjected to a
modified point-in-polyhedron test to determine if it is other-
wise occluded from the viewcell.

An embodiment of this modified point-in-polyhedron test
is shown in FIG. 25 and discussed in detail in conjunction
with that figure. Briefly, this modified point-in-polyhedron
test determines if the test-point is inside the from-viewcell
PAU. The test is somewhat similar to conventional point-in-
polyhedron tests in that a second point known to be outside
the PAU is selected, in this case a point on the viewcell
surface. A line segment is constructed between the test-point
and the outside-point and the line is intersected with the
polyhedron’s polygons. The status (inside or outside of the
polyhedron) of subsegments of the line will change based on
intersections with mesh polygon fragments and UBPS that
comprise the PAU. The test is simplified somewhat in the case
offirst-order wedges, which do not have to be intersected with
other wedges to form the corresponding UBPS (since they
cannot be intersected by other wedges on their unoccluded
side). Moreover since only those PAU surfaces inside the
test-point-viewcell shaft can be intersected by the test line
segment, the entire PAU need not be constructed to complete
the test.

Following step 2160, process flow proceeds to process
21-1, which starts at step 2165 (FIG. 21B.)

In decision step 2165, the result of the modified point-in-
polyhedron test (step 2160) is examined.

If, in decision step 2165, it is determined that the test-point
is occluded, then process flow proceeds to step 2175, where
the overall process returns the result that the tested DM_SEG
is occluded. The result is returned to step 2044 in FIG. 20.

If, in decision step 2165, it is determined that the test-point
is not occluded, then process flow proceeds to step 2170,
where the overall process returns the result that the tested
DM_SEG is not occluded. The result is returned to step 2044
in FIG. 20. Process flow terminates at steps 2170 and 2175.

The method of F1G. 19, F1G. 20A1, and FIG. 21 constructs
an omnidirectional conservative, first-order, from-viewcell
visibility map. The method of FIG. 20A2 produces a conser-
vative, first-order, from-viewcell visibility map that is direc-
tionally constrained. The methods employ conservative lin-
earized umbral event surfaces (CLUES) incident on first-
order silhouette edges and determines if the corresponding
discontinuity mesh segments are actually from-viewcell
occlusion boundaries (segments of the PAU).

In this method, according to some embodiments, the con-
nected structure of the umbral DM boundaries is used to
significantly accelerate the determination of whether a DM
boundary is a from-viewcell occlusion boundary (an edge of
the corresponding VM). The visibility status (from-viewcell

US 9,171,396 B2

147

occluded or not) of a structure (for example a DM polyline)
can only change when the structure intersects a visibility
event surface. For a DM polyline this occurs only where the
DM polyline intersects another DM polyline. Between such
intersections the visibility status of a DM polyline is
unchanged. Consequently, to determine the visibility status of
multiple segments of a DM polyline between intersection
points the status of only one segment needs to be determined.
For adjacent segments of the DM polyline between intersec-
tion points, only the potentially occluding/exposing event
surfaces are generated. This is insured by forming the shaft
between each DM polyline segment and the viewcell to deter-
mine if any unprocessed potentially occluding geometry
exists in the shaft. As with all shaft tests in the present
embodiments, a simple hierarchical spatial organization of
the geometric database can insure O(n Log n) performance

Overall, the output sensitive construction of conservative
linearized umbral visibility map employs a method which
uses traversal of the polygon mesh 2-manifolds (embedded in
3D) to the catastrophic silhouette contours and occlusion
boundaries of the manifolds. The traversal effectively cas-
cades off the silhouette contours, flowing onto other mani-
folds intersected by the visibility event surfaces (wedges/
UBPS) in a manner that realizes an output-sensitive visibility
cascade.

FIG. 21¢ Method of Classifying PVS Polygons as Strongly
Visible, Non-Occluding, or Always-Frontfacing.

According to some embodiments, the PVS is comprised of
the visible polygon fragments of the conservative visibility
map generated by the 3D traversal method of FIG. 20 and
related figures or by the alternate embodiment method of FIG.
26 using UBPS. Alternatively, the PVS is derived from the
umbral discontinuity mesh method of FIG. 12.

Regardless of which of the embodiments is employed, the
PVS polygon fragments generated using the object-space
from-viewcell visibility ofthe present method is conveniently
classified based on their visibility relationship with the view-
cell.

In some embodiments, the process illustrated in FIG. 21C
starts at decision step 2180 to determine if the polygon of the
visibility map is strongly visible from the viewcell. In some
embodiments, a polygon that is strongly visible from the
viewcell is defined as a polygon for which the 3D shaft
between the polygon and the viewcell contains no other poly-
gons. In some embodiments, this determination is made dur-
ing the visibility map construction process (FIG. 20) for each
polygon fragment. Consequently, a strongly visible can be
identified (Step 2180) and labeled during VM construction as
“no z compare.” if identified as shown in step 2183. If the
triangle is not strongly visible then process flow proceeds to
step 2184, in which the triangle is not labeled.

Any polygon so labeled can be later rendered without
computing a z compare operation in the z buffer for the
polygon; since it cannot be occluded from any other polygon
as long as the viewpoint is in the viewcell for which the
VM/PVS was constructed.

In a subsequent decision/classification step 2185, it is
determined if the polygon in the VM is in the polygon-view-
cell shaft of any other polygon in the VM. If the current
polygon is not in the polygon-viewcell shaft of any other
polygon in the VM then processing proceeds to step 2187 in
which the polygon is labeled as “no z write”. Otherwise,
process flow proceeds to step 2186, in which the triangle is
not labeled.

A polygon that is not in the polygon-viewcell shaft of any
other polygon in the VM cannot occlude any polygon in the

10

15

20

25

30

35

40

45

50

55

60

65

148
VM/PVS and therefore can be rendered without either a z
compare or a Z write, which can significantly reduce the cost
of rendering the polygon.

Finally each polygon in the VM/PVS can be classified by
the decision/classification step 2190 in which it is determined
if the plane of the polygon intersects the viewcell. If, in
decision step 2190, it is determined that the plane of the
polygon does not intersect the viewcell, then processing pro-
ceeds to step 2190 in which the VM/PVS polygon is labeled
as “no backface cull”.

Such polygons cannot be backfacing from any viewpoint in

the viewcell from which the VM/PVS was constructed. Con-
sequently a backface cull is not required during the rendering
of polygons in the PVS with this label, thereby reducing the
cost of rendering the polygon. If the test of step 2190 deter-
mines that the plane of the triangle intersects the viewcell then
process flow proceeds to step 2190, and the triangle is not
labeled.
FIG. 22 is a Flowchart Showing the Controlling Process for a
Method of 3D Mesh Traversal to Construct a Backprojection,
from-Silhouette Edge Visibility Map for Determining the
from-Silhouette-Edge Visible Supporting Viewcell Vertex
(VSVV) and Visible Supporting Viewcell Silhouette Contour
(VSVSQO).

The previously described method of FIG. 19, FIG. 20, and
FIG. 21 employs only first-order, conservative, linearized
umbral event surfaces (CLUES) incident on first-order, from-
viewcell silhouette edges.

In the method of FIG. 22, FIG. 23, and FIG. 24, the first-
order CLUES are “adjusted” to more accurately reflect
higher-order, from-viewcell visibility interactions.

In some embodiments, the present method employs a
focused, conservative backprojection approach in order to
identify a conservative (from-silhouette edge) visible sup-
porting viewcell vertex (VSVV) on which to construct the
higher-order wedge. In some embodiments, this “adjust-
ment” of the wedge is applied only in the case that the sup-
porting viewcell vertex (SVV), used in construction of the
original frontprojection first-order wedge, is occluded from
the supported silhouette edge. Otherwise the first-order event
surface (the wedge) is exact.

In general, this adjustment is applied only to those portions
of first order wedges that are not exact. The portions of a
first-order SV-ME wedge that are not exact correspond to
those portions of the for which the supported silhouette edge
is occluded from supporting viewcell vertex (SVV). These
portions are easily determined by examining the supporting
triangle formed between the wedge’s silhouette edge and the
SVV.

Similarly, the portion of a first order SE-MV wedge that are
not exact correspond to those portions of the wedge for which
the supporting viewcell silhouette contour (SVSC) is
occluded from the supported mesh silhouette vertex. This
portion is also determined by examining the supporting swept
triangle between the wedge’s mesh silhouette vertex and the
SVSC segment.

In general, in the present method of FIG. 22, FIG. 23, and
FIG. 24, adjustment to a first-order SV-ME wedge is deter-
mined by a backprojection method in which the wedge’s
supported silhouette edge is used as a light source and the
from-region, 3D mesh traversal, visibility cascade method is
applied to construct a conservative from-edge visibility map
onthe surface ofthe viewcell. This visibility map may contain
a (from-edge) visible supporting viewcell vertex (VSVV)
which is used, instead of the SV'V, to support the correspond-
ing higher-order wedge. Each from-edge backprojection vis-

US 9,171,396 B2

149

ibility map on the surface of the viewcell will have a corre-
sponding visible supporting viewcell silhouette contour
(VSVSO).

Likewise, in first-order visibility, adjacent SV-ME wedges
may be joined by SE-MV wedges which are formed by
extending swept supporting triangles supported by the view-
cell’s supporting viewcell contour (SVC). To “adjust” first-
order SE-MV wedges incident on a mesh silhouette vertex,
the visible supporting viewcell silhouette contours (VSVSC)
are also determined by the backprojection: constructing a
from-silhouette-edge, on-viewcell visibility map. This back-
projection uses the silhouette edges sharing the mesh silhou-
ette vertex as the lightsource. As detailed in a later part of this
specification, the construction of the higher-order SE-MV
wedges connecting two adjacent higher-order or “adjusted”
SV-ME wedges depends on the relationship of the two
VSVCSs corresponding to the SV-ME wedges, as determined
in the backprojection process.

Therefore, the purpose of the from-edge backprojection
method of FIG. 22, FIG. 23, and FIG. 24 is to construct
from-silhouette-edge, on-viewcell visibility maps from
which the corresponding higher-order wedges are derived. In
some embodiments, this conservative visibility map is con-
structed using the a variation of the 3D mesh traversal method
of'the visibility cascade already discussed in conjunction with
FIG. 19, FIG. 20, and FIG. 21. Whereas the method of FIG.
19, FIG. 20, and FIG. 21 uses the viewcell as the visibility
source, the method of F1G. 22, FIG. 23, and FIG. 24 solves the
visibility problem using a specific first-order silhouette edge
(or segments of the edge) as a “source” or view region. Since
both of these are from-region visibility problems there is
significant similarity between the corresponding processes
(and the corresponding figures).

An important difference between the from-viewcell front-
projection visibility solution and the from-edge backprojec-
tion visibility solution is that while the frontprojection
method must solve all from-viewcell visibility; the back-
projection method determines only the from-silhouette-edge
visibility that potentially affects the visibility of the viewcell
from the edge. Thus, the from-silhouette-edge backprojection
problem is confined to the shaft formed between the silhou-
ette edge and the viewcell.
3D Mesh Traversal for Backprojection: Method of Employ-
ing Only Frontprojection-Unoccluded Triangles

In one implementation of the method only those triangles/
segments that are visible in the frontprojection (from the
viewcell) are used in the backprojection. In this method the
triangles visible in the frontprojection have their face orien-
tation reversed for the backprojection calculation. Com-
monly, the frontprojection silhouette edge and the back-
projection silhouette edge (when viewed from the mesh
silhouette edge that is the “source” point for the backprojec-
tion) are the same edge. In this case there are, in fact, no
frontprojection-unoccluded triangles facing the backprojec-
tion source edge (the first-order silhouette edge) before an
orientation reversal is applied.

In other cases not all of the frontprojection visible mesh
elements will be back facing with respect to the reprojection
source edge. In these cases, if the triangle’s orientation was
reversed it would become back facing from the backprojec-
tion source edge. This will cause it to be backfacing with
respect to the source and therefore create a mesh with tri-
angles having an inconsistent orientation. In this case the
triangles that would develop a backfacing orientation with
respect to the backprojection point are removed from the
mesh.

10

15

20

25

30

35

40

45

50

55

60

150

The failure to include some potentially occluding geom-
etry in the backprojection may reduce the precision of the
computed VSVV and the related adjustment of the wedge.
However a conservative result is still insured, since the elimi-
nation of any potentially occluding geometry will only make
the computed VSVV a more conservative estimate of the
SVV. Moreover, by employing only frontprojection-visible
triangles the cost of the backprojection process is signifi-
cantly reduced, since the relevant front-projection visible tri-
angle have already been determined by the time the back-
projection process is initiated for a specific mesh silhouette
edge.

In this approach the frontprojection visible mesh elements
are effectively used as virtual occluders to compute the back-
projection.

Hence, in step 2205, the selection of a seed 3D mesh, the
selection is made from the set of meshes that are visible
(unoccluded) in the frontprojection.
3D Mesh Traversal for Backprojection: Retraction of the
Silhouette Edge Under Higher-Order Visibility

In one implementation of the present method, the back-
projection is determined only from those backprojection
sources (mesh silhouette edges in this case) that are first-order
silhouette vertices in the frontprojection (when viewed from
the viewcell). In this implementation only those wedges
attached to first-order, frontprojection silhouette vertices are
“adjusted” by backprojection to reflect higher-order on-plane
visibility. The adjusted wedges remain attached to the origi-
nal mesh silhouette edge.

Actually when any edge that is a first-order, frontprojection
silhouette edge (when viewed from SVV) is viewed from the
VSVV it may no longer be a silhouette edge since both
triangles sharing the edge may be backfacing with respect the
VSVV. In such a case, the frontprojection silhouette edge
(backprojection source) is actually occluded from the view-
cell. In such a case the actual (exact) from-region umbral
event surface is not supported by this frontprojection silhou-
ette edge but by an edge on the same 2-manifold that is closer
to the viewcell. This migration or “retraction” of the first-
order from-viewcell silhouette edge toward the viewcell is a
potential effect of higher-order visibility as determined by
backprojection. The failure to account for this migration of
the silhouette may in some cases reduce the precision of the
computed VSVV and the corresponding adjustment of the
wedge. However, a conservative result is still insured since an
adjusted visibility event surface (wedge in this case) attached
to a frontprojection first-order silhouette edge will always
produce a more conservative umbral event surface than the
corresponding event surface attached to the corresponding
retracted silhouette.

By keeping an adjusted wedge attached to its original first-
order frontprojection silhouette edge, the “supporting seg-
ment” of the adjusted wedge between the silhouette edge and
the VSVV can potentially violate the “local visibility” of the
mesh on which it resides by penetrating the mesh surface. It is
precisely in such a case that the silhouette edge would tend to
migrate toward the viewcell such that one of the closer con-
nected edges of the mesh produce an adjusted wedge that does
not violate local visibility, and as such becomes the “exact”
silhouette edge.

In order to keep the conservative adjusted wedge attached
to its original first-order, frontprojection silhouette edge the
backprojection process is designed to prevent violations of
local visibility by an adjusted wedge. This occurs when the
adjusted wedge originates on the frontprojection first-order
silhouette edge in such a way that the wedge is on the inside
of the mesh triangle 2-manifold. This is a type of self-occlu-

US 9,171,396 B2

151

sion of the 2-manifold that can be prevented by detecting all
mesh elements (triangles in this case) that form a connected
component with the frontprojection silhouette edge, wherein
the connected component is entirely inside the shaft between
the viewcell and the edge. In some embodiments, this can be
performed using a simple traversal of the triangle mesh, start-
ing at the edge and ending when a triangle intersects the shaft
boundary. These mesh elements are the ones that can produce
the type of self occlusion that causes retraction of the silhou-
ette edge. By identifying and eliminating these elements from
the backprojection determination, the backprojection will
produce a conservative “adjusted” wedge that remains
attached to the original frontprojection silhouette edge but
which accounts for higher-order visibility effects that cause
the SVV to be occluded from the silhouette edge.

Thus, in step 2205 of FIG. 22, the selection of the seed 3D
mesh elements for backprojection, those mesh elements that
could potentially cause self-occlusion of the backprojection-
source silhouette edge are excluded from consideration.

This approach also simplifies the implementation in the
case of on-wedge visibility by 2D mesh traversal, as dis-
cussed in conjunction with FIG. 17. Even greater simplifica-
tion is achieved when this method is employed in present case
of from-viewcell visibility by 3D mesh traversal. By employ-
ing this method in the 3D mesh traversal case, the event
surfaces (wedge polygons) remained attached to the original
first-order frontprojection silhouette contours such that the
construction of a continuous, conservative from-region
umbral boundary surface is in insured.

Once again, alternate implementations are possible in
which retraction of the silhouette edge is allowed by account-
ing for self occlusion. For example, one approach to finding
the “retracted” silhouette edge is to compute the backprojec-
tion from the initial frontprojection, first-order silhouette
edge and determine if the wedge corresponding to the com-
puted VSVV violates local visibility. If local visibility is
violated, then the candidate silhouette edge is not actually
visible from the viewcell when higher-order effects are taken
into account and the adjacent edge closer to the viewcell is
then used as source for the backprojection to determine if the
wedge (corresponding to the new candidate edges’s VSVV)
violates local visibility. The process can be repeated until a
wedge that does not violate local visibility is encountered.
This wedge is used as the adjusted, higher-order wedge.

In general, the amount of additional from-region occlusion
that results only from the retraction of the silhouette edge is
usually small whereas the increased complexity of the back-
projection process can be significant. Keeping the front-
projection wedge fixed to the original frontprojection, first-
order silhouette edge and computing an “adjusted” wedge
incident on the same silhouette edge (corresponding to the
VSVV) by backprojection is an approach which accounts for
most of the higher-order visibility effect with little increased
cost.

As previously emphasized, the higher-order backprojec-
tion adjustment is only applied when the original SVV is
occluded from the first-order silhouette edge or segments
thereof. In further embodiments, metrics are employed to
determine the maximum possible deviation between the a
first-order wedge and the corresponding adjusted higher-or-
der wedge. For example, the angle formed by the first-order
wedge (contained on a supporting plane) and the correspond-
ing separating plane between the silhouette edge and the
viewcell is the maximum possible angular deviation between
the first-order wedge and the higher-order wedge; since using
the present method the higher-order wedge can in the limit
only lie on the separating plane (if the VSVV is the separating

10

15

20

25

30

35

40

45

50

55

60

65

152

point). This angle naturally tends to decrease with increasing
distance from the viewcell (the view region appears more
“point like” from the backprojection source). Consequently,
the higher-order visibility effect determined by the back-
projection method become less important at greater distances
from the view region. The angle metric can be used to deter-
mine if higher-order effects should be computed for any given
frontprojection, first-order silhouette edge.

Returning now to FIG. 22, the controlling process that calls
the main part of the backprojection 3D traversal (step 2215),
is discussed. In addition to being similar to the method of
controlling from-viewcell 3D mesh traversal (FIG. 19); the
method shown in FIG. 22 also is very similar to the previously
described method of controlling a from-vertex (2D mesh
traversal) backprojection shown in FIG. 14.

The flowchart shown in FIG. 22 shows the process of
initiating, reinitiating, and halting the main from-silhouette-
edge backprojection 3D traversal process which is shown in
detail in FIG. 23, and which is described in detail in a subse-
quent part of this specification.

In some embodiments, the process illustrated in FIG. 22
starts at 2205, where the selection of a “seed” triangle to
initiate the, from-silhouette-edge, 3D mesh traversal process
for a single silhouette edge source is shown as step 2205. As
in the frontprojection process, the selection of an initial seed
triangle that is likely to be an exposed occlude accelerates the
process.

In step 2205 only those triangle meshes that are in the shaft
between the silhouette edge and the viewcell (SILE-VC shaft)
are candidates for seed mesh.

Process flow proceeds to step 2210, to identify the contain-
ment segments of the 3D seed mesh by the intersection of the
edge-viewcell shaft’s boundary polygons and triangles of the
seed mesh.

Once a seed 3D mesh and containment segments on the
seed mesh are identified, then process flow proceeds to step
2215 to call the main process of the backprojection 3D mesh
traversal. An embodiment of the main 3D mesh traversal
process for the backprojection is shown in FIG. 23.

Process flow proceeds to decision step 2220 to determine if
there are any existing triangles on which the main part of the
3D mesh traversal has been suspended. If there are no existing
suspended 3D mesh triangles, then process flow proceeds to
step 2225 in which the 3D mesh traversal is terminated,
thereby completing the construction of the 3D on-viewcell
visibility map.

If, in decision step 2220, it is determined that there exist
triangles of the 3D mesh for which the main 3D mesh tra-
versal has been suspended (in step 2330 of FIG. 23), then
process flow proceeds to decision step 2230 to determine if
any triangles exist in the shaft formed by the suspended
triangle (TRI) and the source silhouette edge (SILE).

If, in decision step 2230, it is determined that there are no
triangles in the shaft between the current triangle and the
source silhouette edge (SILE), then process flow proceeds to
step 2255 to construct containment segments on the 3D tri-
angle mesh formed by the triangles connected to the current
suspended triangle.

Process flow proceeds to step 2260 to reinitiate the 3D
mesh traversal on the previously suspended triangle.

If, in decision step 2230, it is determined that there are
triangles in the shaft between the current triangle and the
source silhouette edge, then process flow proceeds to step
2235 to determine if any triangles in the TRI-SILE shaft are
untraversed.

If, in decision step 2235, it is determined that untraversed
triangles exist in the TRI-SILE shaft, then process flow pro-

US 9,171,396 B2

153

ceeds to step 2240, where the 3D mesh traversal is “jumped”
or restarted on the closer untraversed triangles in the TRI-
SILE shaft. This step (which also occurs in step 2330 of the
backprojection main 3D traversal process shown in FIG. 23)
insures that all potentially occluding triangles have been pro-
cessed before the traversal is continued and before a decision
to stop the traversal (because the suspended triangle is com-
pletely occluded from the source edge) is made.

If, in decision step 2235, it is determined that no untra-
versed triangles exist in the TRI-SILE shaft, then process flow
proceeds to step 2245 to determine if a point on the current
(suspended) triangle is inside any polyhedral aggregate
umbrae (PAU), which represents one or more polyhedral
volumes of space that are occluded from the source silhouette
edge. In some embodiments, this test can employ the modi-
fied point-in-polyhedron test shown in FIG. 25. This modified
point in polyhedron test uses first-order event surfaces (first-
order wedges); and, optionally, higher-order umbral bound-
ary polygons (UBPs). This test allows an implicit solution to
the point-in-polyhedron without necessarily constructing the
entire polyhedron/polygon.

If, in decision step 2245, it is determined that a point on the
suspended triangle is inside a PAU, then process flow pro-
ceeds to step 2250 to reinitiate the traversal on the suspended
triangle, and the suspended triangle is no longer labeled as
suspended.

If, in decision step 2245, itis determined that the suspended
triangle is not inside any PAU, then process flow proceeds to
step 2255, where the containment segments of the associated
3D mesh are constructed and the traversal reinitiated as pre-
viously described.

As illustrated in FIG. 22, process flow terminates at steps

2225, 2240, 2250, and 2260.
FIG. 23 Flowchart Showing the Main Process for a Method of
3D Mesh Traversal to Construct a Backprojection, from-
Silhouette Edge Visibility Map for Determining the from-
Silhouette-Edge Visible Supporting Viewcell Vertex (VSVV)
and Visible Supporting Viewcell Silhouette Contour (VS-
VSO).

The main process of the from-silhouette-edge, backprojec-
tion, 3D mesh traversal visibility cascade method is some-
what similar to the from-viewcell 3D mesh traversal process
(FIG. 20).

Turning now to FIG. 23, in some embodiments, the main
backprojection 3D mesh traversal process begins with a
breadth-first, or flood-fill traversal of a manifold triangle or
other polygon mesh as shown in the initial step 2305. The
initial triangle to seed the entire process is selected in the
controlling process shown in the flowchart of FIG. 22.

The from-silhouette edge backprojection process may be
applied to entire first-order silhouette edges. Also, each first-
order silhouette edge (SILE) may be subdivided and the back-
projection calculated for each subsegment. This approach is
employed in the adaptive refinement of individual silhouette
edges in which a single conservative wedge is refined to
produce a conservative linearized visibility event surface,
which converges on the exact visibility event surface (typi-
cally a quadric surface) that is incident on the silhouette edge.
In FIG. 22, FIG. 23 and FIG. 24 the silhouette edge (SILE)
can referto a single first-order silhouette edge or subsegments
thereof.

As previously described, in one embodiment the mesh is a
manifold triangle mesh in which each edge is shared by
exactly two triangles. Other definitions of a mesh are also
possible, including meshes which are not closed. The inter-
section of mesh triangles with wedges or UBPs may produce
more complex mesh polygons. These more complex poly-

10

15

20

25

30

35

40

45

50

55

60

65

154

gons can be converted to triangles using established methods
of polygon triangulation. The triangle mesh is represented as
a directed graph. The method accommodates mesh polygons
other than triangles, however the use of triangles simplifies
the traversal method. The method of FIG. 23 employs a mani-
fold triangle mesh in which each edge is shared by exactly 2
triangles.

Step 2305 indicates traversal to a triangle of the mesh.
Traversal can proceed in a breadth-first or flood-fill graph
traversal order. Using breadth-first traversal of the triangle
mesh, traversal spreads from the initiating triangle outward
forming layers of traversed triangles. Triangles connected by
non-silhouette edges are said to belong to the same “tra-
versal.”

Other traversal orders are possible. The triangle selected to
initiate the traversal of one or more polygon meshes does not
affect the output of the traversal. However, by selecting an
initial triangle that is completely visible and close to the
viewcell the process tends to perform better. In keeping with
the processes of a directed graph traversal, step 2305 indicates
that traversal is limited to untraversed triangles in the mesh.

Process flow proceeds from step 2305 to decision step 2310
to determine if any untraversed triangles are within a 3D shaft
formed by the current triangle and the source silhouette edge
(this shaft is called a TRI-SILE shaft). If there is one or more
untraversed triangle in this shaft, then process flow continues
to step 2330 in which traversal is immediately jumped to the
closer untraversed triangle. In one embodiment, mesh poly-
gons are organized using hierarchical spatial subdivision
structures. This allows the shaft test of step 2310 to rapidly
identify large groups of previously traversed mesh polygons.

Step 2330 effectively enforces a strict front-to-back pro-
cessing of mesh elements for a single mesh or for multiple
mesh objects. The process of jumping the traversal to a closer
potentially occluding triangle can result in endless cycles
caused by cyclic overlap of triangles. Such cycles are also
encountered in Weiler-Atherton visibility algorithm and can
be detected and eliminated by maintaining a directed graph
representation of the overlap relationships. An embodiment
of'this method is presented in FIG. 13 and discussed in detail
in connection with that figure.

Step 2330 insures that the event surfaces originating on
closer untraversed triangles in the triangleXsilhouette-edge
(TRI-SILE) shaft of the current triangle are identified and
constructed prior to a traversal of the current triangle. These
event surfaces may be from-viewcell occlusion boundaries
(determined for these closer silhouette edges in steps 2345-
2368) which would actually restrict traversal of the current
triangle (steps 2335). By forcing a jump to the closer untra-
versed triangles/silhouette edges, step 2310 insures that any
from-silhouette edge occlusion boundaries that could restrict
traversal of the current triangle are constructed prior to tra-
versal of the current triangle. Process flow terminates at step
2330.

Ifthere are no untraversed triangles in the TRI-SILE shaf,
then process flow proceeds to decision step 2315 to determine
if the current triangle being traversed contains a from-silhou-
ette edge (FROM-SILE) occlusion boundary or a contain-
ment boundary (indicating containment in the SILE-VC).
Umbral discontinuity mesh (DM) segments generally form
polylines at the intersection of a mesh triangle with wedges.
Each DM segment is the intersection of a wedge and a tri-
angle, wherein the segment is visible from the wedge’s sup-
porting source element (points or edges) and through the
wedge’s supported silhouette element (point or edge). This is
called an “on-wedge” visible intersection. This intersection is
a segment of the conservative umbral discontinuity mesh and

US 9,171,396 B2

155

may or may not be an edge of the polyhedral aggregate umbra
(PAU). These on-wedge visible segments comprise the
polylines of the conservative linearized umbral discontinuity
mesh. These polylines may or may not be actual from-source
(from-silhouette edge in this case) occlusion boundaries (the
boundary which separates polygon fragments that are conser-
vatively visible from the source (SILE) and polygon frag-
ments that are occluded from the source, wherein the size of
the umbral volume is conservatively underestimated).

From-source occlusion boundaries encountered in step
2315 are discontinuity mesh (DM) polyline segments that
have been determined to be from-viewcell occlusion bound-
aries in step 2363. The details of step 2363 are presented later.
Step 2363 determines which DM polyline segments are from-
silhouette edge occlusion boundaries and is actually per-
formed before a from-viewcell occlusion boundary would be
encountered later in step 2315.

The “on-wedge” visible intersection of a mesh triangle
with a wedge represents a segment of the umbral discontinu-
ity mesh which may or may not correspond to a from-silhou-
ette edge occlusion boundary (OB). Each DM polyline is
determined to be a from-region occlusion boundary (ornot) in
step 2363 and the result is stored with the DM polyline. Since
each DM polyline is processed by step 2363 prior to it being
encountered in steps 2315 the information used for the deci-
sion in step 2315 was previously determined and stored for
the encountered DM polyline segment in step 2363.

If, in decision step 2315, it is determined that the current
triangle does contain an occlusion boundary (OB) segment or
containment boundary segment, then process flow proceeds
to step 2335 to interrupt the traversal of the current 3D mesh
at the OB segment (OB_SEG) or occlusion boundary. Tra-
versal may continue across other non-OB segments of the
triangle. Process flow proceeds to step 2335. In further
embodiments, process flow proceeds from 2335 to process
23-1, which returns the process flow to step 2325.

If, in decision step 2315, it is determined that the current
triangle does not contain an OB segment, then process flow
proceeds to step 2320 to determine if the current triangle has
a silhouette edge. In some embodiments, this determination is
based on the test for a first-order, from-edge silhouette edge
shown in FIG. 3.

If, in decision step 2320, it is determined that the current
triangle does not have a silhouette edge, then process flow
proceeds to step 2325 to process the next untraversed triangle
in the breadth-first traversal of the directed graph correspond-
ing the manifold triangle mesh.

If, in decision step 2320, it is determined that the triangle
being processed does contain a silhouette edge, then process
flow proceeds to step 2345, where the breadth-first traversal
of the directed graph corresponding to the triangle mesh is
stopped at the silhouette edge, and primary wedges are con-
structed incident on the silhouette edge using the first-order
method of pivot and sweep method of wedge construction
(FIG. 1-FIG. 6). In embodiments, the constructed primary
wedges are added to a list called the WEDGE_LIST. The
primary wedges are those wedges constructed on encoun-
tered first-order silhouette edges using the pivot and sweep
method. On initial construction, all wedges are initial wedges
which have not yet been further restricted by an on-wedge
visibility step. In some embodiments, the construction of the
initial primary wedges in step 2345 corresponds to the initial
primary wedge construction shown in step 1210 in FIG. 12.
(the output-insensitive method).

Alternate embodiments are possible in which the first-
order wedges (constructed in step 2345 and the later step
2360) are not constructed using the pivot-and-sweep method

40

45

55

156

of the present invention but instead using the less precise
method of extending the SV-ME wedge planes to intersection
(as described by Teller et. al, 1992).

Process flow proceeds from step 2345 to step 2350, where
wedges in the WEDGE_LIST are selected and submitted to
subsequent processing steps 2355 through 2368.

In a first step of the processing of wedges in the
WEDGE_LIST, step 2355, the on-wedge visible segments of
mesh triangles intersecting the wedge are determined. In
some embodiments, this determination uses the process of
intersecting all mesh triangles with each wedge and later
determining the 2D on-wedge visibility using Weiler-Ather-
ton. This approach is used in prior-art discontinuity meshing
methods and in the simpler output-insensitive conservative
umbral discontinuity mesh method of FIG. 12. Alternatively,
a more efficient output-sensitive 2D mesh traversal solution
to this on-wedge visibility problem is presented in FIG. 15.
Process flow proceeds from step 2355 to step 2360, where the
compound silhouette vertices (CSVs) incident on the wedge
being processed are identified as any on-wedge visible inter-
section of the wedge with a first-order from-viewcell silhou-
ette edge.

Each CSV is an on-wedge visible point of intersection of a
wedge and a first-order silhouette edge. These points corre-
spond to t-junctions of the corresponding compound from-
region silhouette contour. A compound silhouette contour is
formed by silhouette edges that may not be directly connected
by a vertex on the original manifold.

Also in step 2360, SE-MV wedges are constructed on each
of the CSVs identified. These wedges originating on a CSV
are called secondary wedges. These wedges are constructed
using the sweep operation of the pivot-and-sweep method of
wedge construction. In some embodiments, all of these
wedges generated in this step are SE-MV type, generated in
the sweep process. These wedges form a continuous, conser-
vative umbral surface which connects the SV-ME wedges that
intersect at the corresponding CSV. Alternatively, the two
SV-ME wedges can be extended to intersection, forming a
less precise, but still conservative umbral boundary.

Alternate embodiments employing the construction of
wedges by the method of extending the planes of adjacent
SV-ME wedges to intersection are possible. In such an imple-
mentation SE-MV wedges are not constructed.

As previously defined, each CSV corresponds to the inter-
section of a wedge and another wedge which is supported on
the intersected silhouette edge. These wedges intersect at the
point of the CSV.

Also, if both SV-ME wedges intersecting at the CSV pivot
to the same silhouette edge vertex then the two wedges
exactly intersect at their edges and no new SE-MV wedge is
constructed.

All secondary wedges (those incident on CSVs) con-
structed in step 2360 are added to the WEDGE_LIST. Which
means that they will ultimately be processed by step 2355 to
find on-wedge visible segments.

Process flow proceeds from step 2360 to decision step 2363
to determine if the DM_SEG is occluded from all other
“parts” of the corresponding silhouette edge (SILE) except
the vertex supporting the wedge containing the DM_SEG. An
embodiment of this test is disclosed in FIG. 21. Briefly, the
test involves intersecting the DM_SEG with all potentially
intersecting wedges already constructed, and then determin-
ing, by the modified point-in-polyhedron test, if the resulting
subsegments are inside the from-source (from-silhouette
edge in this case) PAU.

If the DM_SEG is otherwise occluded from all other parts
of the silhouette edge (except the SVV supporting the

US 9,171,396 B2

157
DM_SEG’s wedge), then the DM_SEG is an actual from-
silhouette edge occlusion boundary (OB) corresponding to an
edge of the from-edge PAU.

Thus, if in decision step 2363, it is determined that the
DM_SEG is otherwise occluded from the SILE (using the
process of FIG. 21), then process flow proceeds to 2368,
where the DM_SEG is added to the intersected triangle as an
OB_SEG.

If, on the other hand, the DM_SEG is not otherwise
occluded from all other parts of the SILE, then the DM_SEG
is not an actual from-edge occlusion boundary (OB) and
process flow proceeds directly to step 2370 to determine if
any unprocessed wedges remain in the WEDGE_LIST. If; in
decision step 2370, it is determined that unprocessed wedges
remain in the wedge list, then process flow returns to step
2350.

If, on the other hand, it is determined in step 2370 that no
unprocessed wedges remain in the wedge list, then process
flow proceeds to step 2380 to determine if any unprocessed
triangles exist in the current “traversal” (the set of triangles
connected to the current triangle by non-silhouette edges). If
in decision step 2380 it is determined that un-traversed tri-
angles exist in the traversal (the set of triangles connected to
the current triangle by non-silhouette edges), then process
flow proceeds to step 2325, where the next untraversed tri-
angle is processed.

If in decision step 2380 it is determined that no un-tra-
versed triangles exist in the traversal, then process flow pro-
ceeds to step 2383, where the triangles intersected by the OB
segments generated in the current traversal are identified and
retriangulated using the intersecting OB segments. This step
can effectively restrict the 3D mesh traversal at occlusion
boundaries when later encountered in step 2315, and thereby
limit the traversal to non-occluded regions, further enforcing
the output-sensitive character of the method.

Process flow proceeds to step 2385 to continue the traversal
of the 3D mesh on the unoccluded side of the OB segments
generated from the traversal. Since the wedges from one
2-manifold may produce OB points on a different (discon-
nected) 2-manifold, this represents a continuation of the tra-
versal on a newly connected manifold (part of the PAU)
formed by “occluder fusion” of the two manifolds by the
wedge line at the OB segment. Process flow terminates at step
2385.

As previously described, in one embodiment of the present
method, the entire set of triangle mesh objects is contained by
an enclosing mesh object. This enclosing mesh object is simi-
lar to a “skybox” commonly used to surround mesh objects
for interactive visualization applications. In the from-silhou-
ette edge to viewcell backprojection method of FIG. 23, the
viewcell itself is treated as a triangle manifold in a fashion
similar to the skybox object. The use of the viewcell as a
triangle manifold keeps the current method output-sensitive,
since only the encountered unoccluded meshes (in the SILE-
VC shatt) are processed, every mesh in the shaft is processed.
Of course, the present method naturally identifies the unoc-
cluded regions of the viewcell itself from which the VSVV
and VSVSC are determined.

An alternate embodiment of the backprojection process
employs only SV-ME backprojection (from-mesh-silhouette
edge) wedges. In this method, the plane of the backprojected
SV-ME wedges are extended to intersection, simplifying the
resulting on-viewcell backprojected visibility map.

In addition, just as first-order SE-MV wedges can be selec-
tively eliminated by extending the plane of adjacent SV-ME
wedges to intersection; higher-order wedges can be conser-

40

45

158

vatively selectively eliminated by extending the plane of adja-
cent higher-order SV-ME wedges to intersection.

FIG. 24 A and FIG. 24B Process to Determine if a DM_SEG-
MENT is Otherwise Occluded from a Silhouette Edge
Source, Used in Construction of a from-Silhouette-Edge Vis-
ibility Map Backprojection Employing 3D Mesh Traversal

The process shown in FIG. 24A and FIG. 24B implements
the query called in step 2363 of FIG. 23, namely determining
if a DM_SEG generated in the from-silhouette edge back-
projection construction of an on-viewcell visibility map is
otherwise occluded from the silhouette edge source.

The process of FIG. 24 A and FIG. 24B follows the method
shown in FIG. 21 A and FIG. 21B, determining ifa DM_SEG
generated in the frontprojection from-viewcell construction
of'a from-viewcell visibility map is otherwise occluded from
the viewcell source except that the in the case of FIG. 24 A and
FIG. 24B the source is a silhouette edge not the viewcell.

Turning now to FIG. 24 the test, in some embodiments,
begins with a decision step 2410 in which a 3D shaft between
the DM_SEG being tested and the silhouette edge is
employed (DM_SEG-SILE shaft).

If, in decision step 2410, it is determined that there are
untraversed triangles in the DM_SEG-SILE shaft, then pro-
cess flow proceeds to step 2415, where the process is sus-
pended and the main part of the frontprojection 3D mesh
traversal process is jumped to the closer untraversed triangles
in the DM_SEG-SILE shaft. This jump insures that all of the
potentially occluding geometry that can influence the
DM_SEG’s status as a from-SILE occlusion boundary is
identified and processed prior to conducting the backprojec-
tion test which actually determines if the DM_SEG is a from-
SILE occlusion boundary (OB).

If, in decision step 2410, it is determined that no untra-
versed triangles exist in the DM_SEG-SILE shaft, then pro-
cess flow proceeds to step 2420, where the DM_SEG is inter-
sected with other wedges in the DM_SEG-SILE shaft. This
intersection may subdivide the original DM_SEG into a plu-
rality of DM_SUBSEGS, each having a uniform from-SILE
visibility.

Process flow proceeds to step 2425 to determine if the
current DM_SEG (or DM_SUBSEG) is directly connected to
a DM_SEG or DM_SUBSEG for which the from-SILE vis-
ibility status (otherwise occluded or otherwise unoccluded)
has been determined.

If, in decision step 2425, it is determined that the current
DM_SEG or DM_SUBSEG is directly connected to a
DM_SEG or DM_SUBSEG for which the from-SILE occlu-
sion status has been definitively determined, then process
flow proceeds to step 2430.

In step 2430, the occlusion status of the current DM_SEG
or DM_SUBSEG is set to the same status of the DM_SEG or
DM_SUBSEG having a known from-SILE visibility status
and to which the current DM_SEG or DM_SUBSEG it is
directly connected and this status is returned to the calling
function.

If, in decision step 2425, it is determined that the current
DM_SEG or DM_SUBSEG is not directly connected to a
DM_SEG or DM_SUBSEG having a known from-SILE vis-
ibility status, then process flow proceeds to step 2435, where
a point on the DM_SUBSEG is selected and processing pro-
ceeds to step 2440 to form a shaft is between the point
selected in step 2435 and the SILE and processing proceeds to
step 2445, where all wedges in the DM_SEG-SILE shaft are
identified and placed in a list WLIST for later processing.
These are the wedges generated in the steps 2345 and 2360 of
FIG. 23, the main 3D mesh traversal process which generates
the frontprojection, first-order wedges.

US 9,171,396 B2

159

Process flow proceeds to step 2448, where each wedge in
the WLIST is processed by subsequent steps.

Process flow proceeds to step 2450, where for each wedge
in the WLIST, it is determined if the wedge is a first-order-
wedge or a higher-order wedge.

The main 3D mesh traversal process of FIG. 23 generates
first-order wedges using the pivot and sweep construction of
wedges at steps 2345 and 2360. Higher-order wedges can
optionally be constructed using the backprojection process
detailed in a later part of this specification in conjunction with
FIG. 22, FIG. 23, and FIG. 24.

If, in decision step 2450 it is determined that the wedge is
a higher-order wedge, then process flow proceeds to step
2455.

If, on the other hand, in decision step 2450 it is determined
that the wedge is a not a higher-order wedge, then process
flow proceeds directly to step 2458.

In step 2455, the actual from-SILE umbral boundary poly-
gon (UBP) corresponding to the higher-order wedge is con-
structed by intersecting the higher-order wedge with all other
wedges and UBPS that are in both the wedge-SILE
(WEDGE-SILE) shaft and the point-SILE shaft. This process
effectively constructs, for a higher-order wedge identified in
step 2450, that portion of the corresponding UBP that is
inside the point-SILE shaft. A UBP can be constructed from
the corresponding wedge by intersecting it with all other
wedges/UBPs in the shaft formed between the wedge and the
viewcell. In some embodiments, only a subregion of the UBP,
that portion in the point-SILE shaft, is constructed in order to
answer the modified point-in-polyhedron test, which the later
step 2460 in the process.

After step 2455, process flow proceeds to decision step
2458 to determine ifthe WLIST is empty. [f the WLIST is not
empty, then process flow returns to step 2448 where then next
wedge in the WLIST is subjected to subsequent processing.

If, in decision step 2450, it is determined that the wedge is
a first-order wedge, then process flow proceeds directly to
step decision step 2458, described above.

If, in decision step 2458, it is determined that the WLIST is
empty, then process flow proceeds to step 2460 to subject the
DM_SUBSEG point selected in step 2435 to a modified
point-in-polyhedron test to determine if it is otherwise
occluded from the SILE.

An embodiment of this modified point-in-polyhedron test
is shown in FIG. 25 and discussed in detail in conjunction
with that figure. Briefly, this modified point-in-polyhedron
test determines if the test-point is inside the from-SILE PAU.
The test is somewhat similar to conventional point-in-poly-
hedron tests in that a second point known to be outside the
PAU is selected, in this case a point on the SILE. A line
segment is constructed between the test-point and the out-
side-point and the line is intersected with the polyhedron’s
polygons. The status (inside or outside of the polyhedron) of
subsegments of the line will change based on intersections
with mesh polygon fragments and UBPS that comprise the
PAU. The test is simplified somewhat in the case of first-order
wedges, which do not have to be intersected with other
wedges to form the corresponding UBPS (since they cannot
be intersected by other wedges on their unoccluded side).
Moreover, in some embodiments, since only those PAU sur-
faces inside the test-point-viewcell shaft can be intersected by
the test line segment, the entire PAU is not constructed to
complete the test.

Process flow proceeds from step 2460 to process 24-1,
which starts at step 2465 (FIG. 24B).

In decision step 2465, the result of the modified point-in-
polyhedron test (step 2460) is examined.

20

25

30

35

40

45

50

55

60

65

160

If, in decision step 2465, it is determined that the test-point
is occluded, then process flow proceeds to step 2475, where
the overall process returns the result that the tested DM_SEG
is occluded. The result is returned to step 2363 in FIG. 23.

If, in decision step 2465, it is determined that the test-point
is not occluded, then processing proceeds to step 2470.

In step 2470 the overall process returns the result that the
tested DM_SEG is not occluded. The result is returned to step
2363 in FIG. 23. Process flow terminates at 2470 and 2475.
FIG. 24C Using the from-Silhouette Edge Backprojection
Visibility Map to Constructive a Conservative Visible Sup-
porting Viewcell Silhouette Contour (VSVSC) that Contains
the VSVVs Corresponding to | Adjacent Silhouette Edges.

After the from-silhouette edge backprojection visibility
map is constructed for a specific silhouette edge subsegment
by the processes shown in FIG. 22, FIG. 23, and FIG. 24, a
VSVV is determined. The VSVV is the point visible from the
silhouette edge that is a vertex of the from-SILE, on-viewcell
visibility map (and so on an edge or face of the viewcell) that
supports a plane pivoted from the silhouette edge to the view-
cell.

Each first-order silhouette edge or subsegment thereof, if
subjected to the backprojection process, will result in a cor-
responding adjusted, or higher-order SV-ME wedge incident
on the same silhouette edge or subsegment. The higher-order
SV-ME is supported by the VSVV.

In addition to producing a VSVV for each silhouette edge
or subsegment to which it is applied, the from-silhouette edge
backprojection also produces a visible supporting viewcell
silhouette contour (VSVSC) as part of the on-viewcell vis-
ibility map.

To construct the SE-MVs that connect adjacent higher-
order SV-MEs the VSVSCs produced during the from-edge
backprojection of the corresponding silhouette edges are
used.

As previously described, SV-ME wedges represent the
restriction of visibility by occlusion along the supported sil-
houette edge by polygon containing the edge. In contrast
SE-MV wedges do not reflect the same aspect of occlusion at
supported silhouette vertex because a vertex cannot actually
occlude any light/visibility from a regional source. A point
cannot occlude an area light source. Instead, at an inside
corner of a silhouette contour the from-region visibility is
restricted by containment of the light/viewpoint on the sur-
face of the source/viewcell. The corresponding SE-MV
wedges incident on a silhouette vertex reflect the limits of this
containment.

In the first-order implementations of the present visibility
method, SE-MV wedges are generally only constructed at
inside-corner silhouette vertices (and compound silhouette
vertices which are treated as virtual inside corners). Higher-
order SV-ME wedges may be connected by one or more
SE-MV wedges even if the SV-ME wedges do not strictly
connect at an inside corner. This situation occurs, for
example, when a single first-order silhouette edge is adap-
tively subdivided and individual higher-order SV-ME wedges
determined for each of the subsegments.

The SE-MV wedges connecting adjacent SV-MEs are
derived from the VSVSCs of the adjacent higher-order
wedges and particularly depend upon how the VSVSCs inter-
sect each other. In the first-order case adjacent silhouette
edges share a common SVSC, as long as the silhouette edges
are first subdivided by intersection with the planes of the
viewcell faces.

Therefore, the structure of the VSVSC, and its relationship
to the VSVSC from adjacent silhouette edges, determines the

US 9,171,396 B2

161

set of SE-MVs connecting two adjacent higher-order wedges
at the point connecting the two corresponding silhouette
edges/subsegments.

In first-order, frontprojection, the actual supporting view-
cell silhouette contour (SVSC), used to construct the “swept”
first-order SE-MV wedges, is always a simple convex
polyline comprised of one to at most approximately six edges
of the viewcell.

In contrast, during the from-silhouette edge backprojection
process the visible supporting viewcell silhouette contour
(VSVSCQ) inscribed on the viewcell can become arbitrarily
complex. Depending on the arrangement of mesh polygons in
the shaft between the source silhouette edge and the viewcell;
the VSVSC can become a non-convex polyline or even mul-
tiple disconnected polylines having a large number of seg-
ments.

Since the purpose of the higher-order backprojection
method is to provide a simple conservative higher-order
“adjustment” to SV-ME wedges and the SE-MV wedges
which may connect them, the present method employs a
number of techniques to minimize the complexity of the
VSVSC. These techniques allow higher order visibility
refinements to improve the precision of the first-order result
without introducing too many additional event surfaces.

In embodiments, two strategies are employed to insure that
complex VSVSCs are avoided in the backprojection process:
1) identification of cases where the VSVSCs for connected
silhouette edges are each simple and they are simply related
and, 2) convex simplification of complex VSVSCs. The first
approach is discussed first.

The two VSVSCs corresponding to connected silhouette
edges (or subdivided subsegments of the same edge) are often
very simple and they are simply related. Consider two sub-
segments (A and B) of the same silhouette edge which has
been subdivided for the purpose of higher-order refinement.
The SVVs of the two are the same (definition of supporting
plane). The VSVV of segment A is likely to be on an edge of
the viewcell. The VSVV of connected subsegment B is also
likely to be on an edge of the viewcell. If both VSVVs are on
an edge of the viewcell (not necessarily the same edge), then
the relevant component of the common, intersecting VSVSCs
used to generate the SE-MV wedges connecting A and B is
the portion of the original SVSC (edges of the viewcell)
connecting the VSVV of A and the VSVV of B. In this
common case the joining SE-MV wedges are constructed in a
modification of the sweep process, wherein the sweep is
between the two VSV Vs. (FIG. 24C steps 2480 and 2483).

If, in the previously described case, the VSVVs of both A
and B are on the same edge of the viewcell, and these VSV Vs
are both produced by the intersection of a backprojection
visibility event surface arising on the same intervening (back-
projection) silhouette edge, then subsegment A and subseg-
ment B are on a region of the original frontprojection silhou-
ette edge for which the exact from-viewcell umbral event
surface is a quadric surface produced by the silhouette edge,
the intervening backprojection silhouette edge, and the view-
cell edge. The adaptive subdivision of this region of the front-
projection silhouette edge produces a set of SV-ME wedges
and their connecting SE-MV wedges that conservatively
approximate this quadric, and in the limit of the subdivision
converges on the quadric surface.

If the VSV Vs are on different edges of the viewcell (but
produced by the same intervening backprojection silhouette
edge), then the resulting SE-MV wedges (together with the
adjacent SV-ME wedges) is the conservative representation
of n quadrics, where n is the number of viewcell edges
between the two VSV Vs. These quadrics are in general joined

10

15

20

25

30

35

40

45

50

55

60

65

162

by shared generator edges. By further subdividing the two
silhouette segments and backprojecting, the set of connected
quadrics could be adaptively approximated on the initial sub-
segments. The triple tetrahedral wedge or shaft test described
by Drettakis et. al and Durand et. al [Visibility Skeleton] can
optionally beused to find the exact connecting generator edge
boundaries, but this is not required for the present method.

The case of subsegment A and subsegment B corresponds
to a Source-EEE visibility event quadric, an event surface
formed by two edges of the polygon mesh and one edge of the
viewcell, described by Drettakis et. al. in their description of
the complete discontinuity mesh. As specified, the present
method of from-silhouette edge backprojection can easily
identify cases corresponding to higher-order, S-EEE event
surfaces and approximate these surfaces with a conservative
polygonal approximation.

Other adjacent silhouette edges/segments may result in
corresponding VSVSCs that have the corresponding VSVVs
not on an edge of the viewcell but interior to a face of the
viewcell. If both of the VSVSCs are convex and are on the
same face of the viewcell, and one is contained within the
other, then a line segment is formed connecting the two
VSV Vs. This line segment forms a swept triangle with the
shared silhouette vertex that produces a conservative SE-MV
connecting the two adjacent adjusted SV-ME wedges. (FIG.
24C steps 2485, 2487, and 2489).

While some from-silhouette edge backprojections produce
relatively simple VSV SCs, others may produce VSVSCs that
are complex and have the corresponding VSVV not on an
edge of the viewcell, but inside one of the faces of the view-
cell. Each of the VSCSVs from the backprojection of con-
nected silhouette edges may be non-convex and may have
disconnected components. Moreover the VSVSCs may not
even intersect. This makes a sweep operation at the shared
silhouette vertex undefined.

Inthis case, the SV-ME (or SE-MEs) supported by adjacent
silhouette edge subsegments may be connected by a series of
SE-MVs which are arbitrarily complex reflecting the com-
plexity of the VSVC that connects the two VSV Vs. Actually,
the two VSVVs may not actually be connected on the VSVC,
which may have more than one connected component.

In order to simplify the set of SE-MV wedges connecting
the SV-ME wedges on adjacent subsegments a conservative
simplification of the VSVSC corresponding to each subseg-
ment is made. (FIG. 24C steps 2485 and 2491).

This simplification involves finding the VSVV or VSVE
(visible supporting viewcell edge) for each subsegment and
then extending the plane of the respectively SV-ME or SE-
MYV to bisect the viewcell by planes parallel to the wedges
formed by the VSVV or VSVE.

This bisection of the viewcell is performed for each of the
adjacent silhouette edge subsegments. FEach resulting
VSVSCs has asimple relationship to the original SVSC of the
viewcell: the new viewcell silhouette contour is a subset of the
original, cut by the plane. As a result of this cut the original
SV-ME wedges incident on the silhouette edge are converted
to SE-ME wedges since they are supported by a supporting
viewcell structure which is parallel to the respective edge.
After the bisection of viewcell, the VSVSCs typically have a
simple relationship: one is a subset of the other (unless the
new VSVEs intersect on the viewcell which cannot occur if
they correspond to a single subdivided silhouette edge, since
they would be parallel in that case).

Since SE-MEs supported by adjacent subsegments are sup-
ported by points on the supporting viewcell silhouette con-
tour (SVSC) the SE-MEs can be joined by SE-MV's generated

US 9,171,396 B2

163
by segments of the SVSC that connect the corresponding
SE-MEs of the two corresponding new VSVSCs, conserva-
tive silhouette contours.

However, these SE-MVs through the point shared by the
two connected silhouette subsegments will each join one of
the SE-MEs on edge and the other will be intersected not on
edge but exactly on face.

To find the two SE-MEs the set of all SE-MVs formed
between the two VSVSCs are formed from the corresponding
swept triangles, the SE-MV wedges are intersected with each
other and with the SE-MEs to find the continuous connecting
polygonal surface. Note that these SE-MV wedges may inter-
sect the SE-ME wedges, not just edge-to-edge but also inter-
sect in the interior of the wedge. Likewise, the SE-MV swept
wedges may also intersect each other in the interior of the
wedge.

Other methods of conservatively simplifying complex
VSVSCs generated by backprojection can be employed. In
one method, a non-convex VSVSC may be processed by any
method for convex simplification of a polyline. Disconnected
components of VSVSCs corresponding to the backprojection
of'a single silhouette edge can be conservatively connected by
forming their convex hull on the viewcell. Likewise, discon-
nected components of VSVSCs corresponding to the back-
projection of adjacent silhouette edges be conservatively con-
nected by forming their convex hull on the viewcell. The
simplified convex VSVSCs result in simplified SE-MVs to
connect the adjusted SV-MEs.

Conservative, convex simplification of the common
VSVSC connecting the two VSVSVs for adjacent segments
can significantly reduce the complexity of the resulting from-
region visibility result (DM, VM, or PAU).

In some cases, the VSVV for two connected silhouette
edges are visible from the edges (the corresponding SV-MEs
are exact) but portions of the viewcell edges supporting the
swept supporting triangles corresponding to the connecting
SE-MVs may be occluded from the shared silhouette vertex.
In this case, a VSVSC can be constructed using an on-view-
cell from-point visibility map generated using the back-
projection process with the shared silhouette vertex as the
source. From-point backprojection employs a simplified
embodiment of the method of FIG. 22, and FIG. 23. In the
from-point backprojection case, all wedges are from-point
UBPs and are generated using the definition of from-point

25

30

35

40

45

164

silhouette edge, no sweep operation is used in the wedge
construction and each DM_SEG is known to be a OB_SEG,
so the test of FIG. 24A and FIG. 24B is not used.

The VSVSC is confined to the surface of the viewcell.
Occlusion boundary segments may effectively span one or
more faces of the viewcell, but are treated as continuous
polylines on the mapping.

In one technique, to simplify the backprojection imple-
mentation, mesh silhouette edges used as backprojection
sources can be first subdivided by intersecting with the view-
cell face planes to form segments. For each subsegment of
such segments, the corresponding VSVSC is generally con-
fined to the same set of viewcell faces. Further, subdivision of
any segment can be driven by the previously discussed error
metrics, which estimate the deviation of the first-order wedge
from the corresponding higher-order wedge.

It should be noted that the from-silhouette edge back-
projection process itself specified herein itself employs the
first-order model of visibility propagation. Consequently, it
produces a guaranteed conservative, but not necessarily exact
adjustment of first order frontprojection SV-ME wedges and
the SE-MV wedges that connect them. It is possible to
employ higher-order refinement approach in the backprojec-
tion process itself. This would approximate quadrics in the
on-viewcell visibility map which correspond to NonEmitter-
EEE events described by Drettakis e. al. (1994). Since these
NonSource-EEE events rarely contribute significantly to the
from-viewcell umbral volume; this approach can signifi-
cantly complicate the implementation and is unlikely to sub-
stantially improve the precision of the first-order backprojec-
tion result.

Table IX shows the types of event surfaces (using the
nomenclature of table I) that are accounted for by the first-
order method, the backprojection method using first-order
visibility propagation in the backprojection, and the back-
projection method in which higher-order visibility is used. In
the latter case, portions of source the mesh silhouette edge
visible from the (from-segment) mesh silhouette edge are
determined by a backprojection. As previously described, the
E-EV surfaces generated using the first-order model of vis-
ibility propagation in some cases correspond to the E-EV
event surfaces of discontinuity meshing. In other cases, the
E-EV surfaces generated by the first-order method do not
correspond to any event surface constructed using the prior-
art method of discontinuity meshing (in which the E-EV
event surfaces do not necessarily form a continuous umbral
event surface).

TABLE IX

Using First-Order Visibility Propagation Methods in Frontprojection and
Backprojection to Approximate the Four Types of Visibility Event Surfaces

Higher-Order Method ~ Higher-Order Method
(Backprojection Using (Backprojection Using
First-Order Visibility ~ First-Order Visibility
Propagation From Propagation From
Source Mesh Mesh Silhouette Edge
Silhouette Edges to to Source Silhouette

First-Order Method Viewcell) Edge)

E-EV

(Source Vertex-Edge
Events)

E-EEE

(Source Edge-Edge-
Edge Events)

Exact + Conservative ~ Exact + Conservative Exact + Conservative

Conservative,
Approximate

Conservative,
Approximation
Improves with
Refinement

Conservative,
Approximation
Improves with
Refinement

US 9,171,396 B2

165
TABLE IX-continued

166

Using First-Order Visibility Propagation Methods in Frontprojection and
Backprojection to Approximate the Four Types of Visibility Event Surfaces

Higher-Order Method Higher-Order Method
(Backprojection Using (Backprojection Using

First-Order Visibility
Propagation From
Source Mesh
Silhouette Edges to

First-Order Visibility
Propagation From
Mesh Silhouette Edge
to Source Silhouette

First-Order Method Viewcell) Edge)
NonE-EV No Exact + Conservative ~ Exact + Conservative
(Non-Source Vertex
Edge Events)
NonE-EEE No No Conservative,
(Non-Source Edge- Approximation

Edge-Edge Events)

Improves w Refinement

2
In summary, the backprojection process can result in a
VSVSC that is non-convex and which may have multiple
disconnected components. This can substantially increase the
complexity of the SE-MV wedges incident on a vertex shared 5
by adjacent mesh silhouette edge subsegments. When the
VSVSC has multiple disconnected components, then the vis-
ibility problem is no longer from-region but actually “from-
multiple-regions.” Thus, the methods of conservatively con-
necting multiple disconnected components of the VSVSC,
and of convex simplification of single VSVSC is used to
control the complexity of the resulting visibility map or PAU.
Once again, the present method allows the user to select the
specific higher-order visibility effects that are employed in 3
the from-viewcell visibility solution (silhouette retraction,
higher-order backprojection etc.). Moreover, the use of
higher-order effects for specific silhouette edges can be

3

0

5

0

Moreover, the backprojection methods for refining the
first-order visibility map also employ the 3D and 2D traversal
methods but using different sources, occluders, and targets.

The following tables summarize 3D and 2D mesh traversal
algorithms and how they can be used in both frontprojection
and backprojection modes by employing different source
(view region), occluder, and target combinations. In this
sense, the target is the geometry on which the visibility map
occlusion boundary elements (segments in 3D algorithm and
points in the 2D algorithm) are constructed.

TABLE X

Variations of 3D Mesh Traversal Algorithm For From-Viewcell Visibility

. 3D Visibility M S Occlud: Target
guided by heuristics which consider the maximal possible 20 sibilty Map ouree conders ree
deviation between the ﬁrst_order and higher-order resuh From-Viewcell Viewcell All Manifold Meshes All Manifold
b d ific hich d Ffect (FIGS. 19, 20, 21) Meshes

ased on specilic mgher oraer e1ects. Backprojection From- ~ Silhouette From-Viewcell Viewcell
Summary of 3D and 2D Mesh Traversal Algorithms for from- Silhouette-Edge Edge Unoccluded Manifold
Region Visibil (FIGS. 22, 23, 24) Meshes and From-

) . ty . L. Viewcell Silhouette

As is clear from the previous description, the output-sen- 43 Edges all in
sitive, mesh traversal methods of constructing visibility maps f/{houetltlesid%f‘

K K iewcell Sha:
in the 3D case (e.g., from-viewcell PVS) and the 2D case
(e.g., on-wedge visibility) are very similar.
TABLE XI
Variations of 2D Mesh Traversal for On-Wedge Visibility
2D On-Wedge Visibility
Map (FIGS. 14, 15, 16) Source Occluders Target
SE-MV, SV-ME, SE-ME: Viewcell edge or ~ All Manifold Meshes All manifold meshes
FrontprojectionFrom- Viewcell Vertex and From Viewcell
viewcell-edge or vertex Silhouette Edges
(FIGS. 14, 15, 16))
SBackprojection From- Mesh Silhoeutte All Manifold Meshes ~ Viewcell Edges

viewcell-edge
(FIG. 17, 18,19)

Vertex

and From Vertex

Silhouette Edges

US 9,171,396 B2

167

Table XII shows the corresponding surface and region
elements for the 3D and 2D mesh traversal methods.

TABLE XII

Surface and Region Elements for 3D and 3D From-Region Visibility

Element 3D 2D

From-Source-Feature
Umbral Boundary

Wedge Wedge Line (WL)

Element
From-Source Umbral ~ Umbra Boundary Polygon ~ Umbra Boundary
Boundary Element (UBP) Line (UBL)

From-Source Umbral
Boundary Region

Polyhedral Aggregate
Umbrae (PAU)

Polyline Aggregate
Umbrae (PLAU)

FIG. 25 Method of Point-Occlusion Test Using First-Order
Wedges and Higher-Order Wedges

The method of constructing a conservative, linearized,
umbral visibility map shown in FIG. 19 and FIG. 20 uses a test
to determine whether a point on a discontinuity mesh region
is from-viewcell occluded or from-viewcell unoccluded (e.g.
at step 1945 of FIG. 19). This point-occlusion test is formu-
lated as a modified point-in-polyhedron test and is shown as
the flowchart of FIG. 25.

In embodiments, process flow starts at step 2505, where a
line segment is formed connecting the test point (TP) and a
point on the surface of the viewcell. The point on the viewcell
surface is assumed to be unoccluded from the viewcell.

Process flow proceeds to step 2510, this line segment is
intersected with potentially all mesh triangles, first-order
wedges, and higher-order UBPs. The mesh triangle contain-
ing the test point is not counted as an intersection point.

Note that while first-order wedges can be used in the test
any higher-order wedges must first be intersected with other
wedges to form the corresponding higher-order UBPs. This is
required because, unlike first-order wedges, the unoccluded
side of higher-order wedges can be intersected by other
wedges. This fact means that the on-wedge visibility of a
higher-order wedge can have a complex structure including
overlapping holes caused by overlapping wedges that inter-
sect the higher-order wedge on its unoccluded side. Conse-
quently, the on-wedge visibility structure of a higher-order
wedge is first determined by constructing the corresponding
higher-order UBP. The higher-order UBP, not the higher-
order wedge, is then used in the point-occlusion test.

Process flow proceeds to step 2512, where the intersection
points generated in step 2510 are processed beginning at the
point on the viewcell surface and proceeding to the test point.

Process flow proceeds to decision step 2515, where the
type of intersection is examined to determine if it corresponds
to a mesh triangle intersection.

If, in decision step 2515, it is determined that the intersec-
tion point corresponds to a mesh triangle intersection, then

10

15

20

25

30

35

40

45

50

168

process flow proceeds to step 2520, where the value of a
variable (LS_STATE) indicating the possible state of occlu-
sion of the new subsegment of the line segment LS containing
the intersection is set to a state “occluded”.

If, in decision step 2515, it is determined that the intersec-
tion does not correspond to a mesh triangle, then process flow
proceeds to step 2525 to determine if the intersection point
corresponds to a first-order wedge or a higher-order UBP. In
decision step 2525, if the intersection point corresponds to a
first-order wedge, then process flow proceeds to step 2545 to
determine if the intersection point corresponds to an intersec-
tion with the occluded or unoccluded side of the wedge when
the line segment LS is considered in the direction from the
viewcell surface toward the test point TP.

If, in decision step 2545, it is determined that the intersec-
tion is with the unoccluded side of the wedge, then process
flow proceeds to step 2550, where the value of LS_STATE is
not changed.

If, in decision step 2545, it is determined that the intersec-
tion is with the occluded side of the first-order wedge, then
process flow proceeds to step 2555.

If, in decision step 2555, the current value of LS_STATE is
“unoccluded,” then process flow proceeds to step 2560. In
step 2560 the value of LS_STATE is left unchanged.

If, in decision step 2555, the current value of LS_STATE is
“occluded,” then process flow proceeds to step 2565. In step
2565, the value of LS_STATE is set to “unoccluded”.

If, in decision step 2525, it is determined that the inter-
sected structure is a higher-order UBP, then process flow
proceeds to step 2530 to determine if the intersection point
corresponds to an intersection with the occluded side or the
unoccluded side of the UBP when the line segment LS is
considered in the direction from the viewcell surface toward
the test point TP.

If, in decision step 2530, it is determined that the intersec-
tion is with the occluded side of the UBP, then process flow
proceeds to step 2540 to set the value of LS_STATE to “unoc-
cluded”

If, in decision step 2530, it is determined that the intersec-
tion is with the unoccluded side of the UBP, then process flow
proceeds to step 2535 to set the value of LS_STATE to
“occluded.”

Once all of the intersection points have been processed
then the from-viewcell visibility of the test point is indicated
by the final value of LS_STATE. Process flow terminates at
steps 2520, 2535, 2540, 2560, and 2565.

In embodiments, the point-occlusion query of FIG. 25 is
used to answer both 2D and 3D occlusion queries depending
upon the choice of source, occluder and target. Table XIII
shows how the point-occlusion query is used for various
occlusion queries encountered during 3D and 2D from-region
visibility problems in both frontprojection and backprojec-
tion (higher-order).

TABLE XIII

Variations of 3D and 2D Point-Occlusion Queries

Visibility Query Source Occluders Target
3D Frontprojection: Is Point Viewcell Frontprojection, From-viewcell Point
Occluded From Viewcell? unoccluded mesh triangle fragments
(Frontprojection Point-in- and First-Order Wedges and

Polyhedron Test) (FIG. 25) Higher-Order UBPs

3D Backprojection: Is Point Mesh Backprojection From-Mesh- Point
Occluded From Mesh Silhouette Silhouette Silhouette-Edge Unoccluded Mesh-

Edge Segment Edge Tri Fragments and First-Order

169

US 9,171,396 B2

TABLE XIII-continued

170

Variations of 3D and 2D Point-Occlusion Queries

Visibility Query Source Occluders Target
(Backprojection Point-in- Wedges and Higher-Order UBPs
Polyhedron Test) (Constructed from From-Viewcell
Unoccluded Manifold Meshes and
From-Viewcell Silhouette Edges all
in Mesh Sihouette Edge-Viewcell
Shaft)
2D Frontprojection: Is Point Viewcell Frontprojection From-Viewcell- Point
Occluded from Viewcell Edge Edge Edge Unoccluded unoccluded mesh
(Frontprojection Point-in- segments and First-Order Wedge
Polygon Test)(FIG. 16 step 1650) Lines and Higher-Order UBLs
2D Backprojection: Is Point Mesh Frontprojection From-Viewcell- Point
Occluded from Mesh Silhouette Silhouette Edge Unoccluded unoccluded mesh
Edge (SE-ME case) Edge segments and First-Order Wedge
(Backprojection Point-in- Lines and Higher-Order UBLs.
Polygon Test) (Constructed from From-viewcell-
edge unoccluded segments and
silhouette vertices all in mesh-
silhouette-edge X viewcell-edge
shaft.
1D: Is point Occluded From Point Point

Point (Ray cast)

FIG. 26 Alternate Embodiment Method of Constructing
Polyhedral Aggregate Umbrae (PAU) from Umbral Boundary
Polygons (UBPs) Using 3D Mesh Traversal

An alternate embodiment of the 3D mesh traversal process
shown in FIG. 20 and related figures employs UBPS instead
of wedges.

In this method each primary and secondary wedge con-
structed in steps 2040 through 2043 is intersected with other
potentially intersecting wedges/UBPS to form the corre-
sponding UBPs. This is conditioned on that each of the poten-
tially intersecting wedges is also intersected with their poten-
tially intersecting wedges.

Since each UBP is a boundary of the from-viewcell PAU,
each segment of intersection of a UBP and a mesh polygon is
an occlusion boundary (OB_SEG).

This alternate embodiment is shown as FIG. 26. The
method of FIG. 26 is very similar to the 3D mesh traversal
method of FIG. 20A. In both cases the traversal is initiated
using the method of FIG. 19.

The method of FIG. 26 follows the exact corresponding
steps described in conjunction with FIG. 20A up to step 2661.
See the discussion of FIG. 20A for details of these corre-
sponding steps.

Step 2661 is the step in which each wedge is intersected
with potentially intersecting UBPs to determine which por-
tion of the wedge is a UBP. Those wedges and UBPs that
intersect the current wedge are in the shaft formed by the
wedge and the viewcell. If the current wedge is a first-order
wedge then the potentially intersecting wedges should
already have been constructed (by virtue of step 2610 which
insures that potentially occluding polygons are processed
first). Step 2661 may be performed recursively to identify all
UBP intersections that influence the current UBP. In embodi-
ments, step 2661 is identical to step 2155 of FIG. 21 except
that in this case it is performed for first-order and higher-order
wedges.

Alternate embodiments in which the current wedge is a
higher-order wedge then the traversal is jumped to closer
untraversed polygons in the wedge-viewcell shaft since
wedges/UBPs incident on polygons in this shaft may intersect
the current higher order wedge.

25

30

35

40

45

50

60

65

In subsequent decision step 2663 it is determined if the
DM_SEG of a wedge (determined in step 2655) is also a
segment of the UBP constructed from the wedge.

If, in decision step 2663, it is determined thatthe DM_SEG
is a segment of the corresponding UBP then processing pro-
ceeds to step 2668 in which the DM_SEG is added to the
intersected mesh triangle as an occlusion boundary segment
OB_SEG. This step is identical to the corresponding step
2045 in FIG. 20. Subsequent steps in the process of FIG. 26
are identical to the corresponding steps of FIG. 20.

The method of FIG. 26 determines whether a DM_SEG is
an OB_SEG by explicit construction of the relevant UBPs.
Therefore the separate test to determine if a DM_SEG is
otherwise occluded from the viewcell (FIG. 21) is not
required.

If UBPs are employed, then the test to determine if a point
inside any PAU (step 1945) uses a conventional point-in-
polyhedron test. If first-order wedges are employed (as in
FIG. 20) then step 1945 employs the modified point-in-poly-
hedron test (shown in FIG. 25). Estimates of the Computa-
tional Cost of Constructing CLUDM (Using Non-Output-
Sensitive Method of FIG. 12) and CLUVM (Using Output-
Sensitive Method of FIG. 20 & FIG. 15). The following terms
are used in the subsequent equations:

M=number of polygons in the model

N=number of edges in a viewcell

S=number of first-order silhouette edges in environment

Ssuep~number of first-order silhouette edges in a shaft
formed between a single first-order silhouette edge and the
viewcell

M ~number of visible polygons in the model

S,=number of visible first-order silhouette edges in envi-
ronment

S psnan—number of visible first-order silhouette edges in a
shaft formed between a single first-order silhouette edge and
the viewcell

V, =number of vertices of intersection between all poly-
gons and a single wedge

M, =number of mesh polygons intersecting a wedge

V,,,—number of visible (from point or from edge) silhou-

svw

ette vertices on a wedge

US 9,171,396 B2

171

Seg,,,=number of on-wedge visible segments of intersec-
tion between mesh polygons and a wedge

The following equations assume first-order visibility
propagation with no backprojection. These equations reflect
estimates of the computational cost of constructing from-
region visibility solutions, they are not necessarily exact.

Equation A is an approximate expression for the upper
bounds of computational cost of constructing a conservative
umbral discontinuity mesh using the conventional disconti-
nuity mesh construction approach (FIG. 12).
Equation A (Output Insensitive Method of FIG. 12):

Cost = (N 5 # Sspqp) xLogM [+ Intersect all wedges
with polygonss /+(N S #Sgpap)V, * M,, [#2D On-Wedge
Visibility by 2D Weiler Athertons /+(M? «N% %57 # 55,,0)

Log(N #S #Sgpap) / # From viewcell visibility of DM regions# /

The first term of equation A is the cost of intersecting all of
the mesh triangles with all wedges. This term assumes that the
geometry is organized using a 3D spatial hierarchy which
makes the intersections O(n Log n).

The second term is the cost of determining the visible
segments of the wedge-triangle intersections using the 2D
Weiler- Atherton method employed by prior-art discontinuity
meshing. This term indicates that for each wedge generated,
all vertices of intersecting mesh triangle segments (V) will
generate a ray that must be intersected with other mesh tri-
angles that intersect the wedge (M,,). M,, is a (generally
small) subset of all mesh triangles (M). The cost of determin-
ing the M, is expressed in the first term. As shown in the table
the number of wedges generated is N*S*Sg,, ;.

The third term is the cost of determining, for all of the
discontinuity mesh regions created by the meshing, whether
the region is from-viewcell occluded or unoccluded. For such
tests a line between single point in each discontinuity mesh
region and the viewcell surface must be tested against all of
the wedges. Because, in general, n wedges intersect any sur-
face to form n? regions on the surface, the first factor in the
term is quadratic in the number of wedges generated by any
silhouette edge. The second factor reflects the number of
event surfaces which need to be tested against.

Equation B (Output-Sensitive 3D and 2D Mesh Traversal
Method of FIG. 20 and FIG. 15):

Cost = M, «LogM /+3D shaft test between
visible triangles and other trianglesx / +N # Sy # Syspqp *
(Seg,,, » LogM + V,,, «LoghM)/+2D On-wedge visibility
traversalu [+(MJ « N? 53 Shg0)Log(N =Sy #Svsnan) [+

From-viewcell visibility occlusion boundary polyliners /

Equation B is an approximate expression for the cost of
constructing a first-order, conservative, linearized, umbral
visibility map using the 3D traversal method of the present
invention.

The first term is the cost of testing for unprocessed triangles
in the triangle-viewcell shaft of each visited/traversed mesh
triangle. This term also assumes that the geometry is orga-
nized using a 3D spatial hierarchy.

10

15

20

25

35

40

45

50

55

172

The second term expresses the overall cost of the 2D mesh
traversals to determine visibility of triangle segments on the
wedges. Since wedges are generated only on visible silhou-
ette edges by the 3D traversal, the cost is proportional to the
number of visible silhouettes S, rather than the number of all
silhouettes S, as in the second term of equation A. The cost of
determining visibility on each visible wedge using the 2D
mesh traversal is proportional to the number of visible silhou-
ette vertices on the wedge (V) (which produce rays that are
intersected with mesh triangles M) and the number of visible
mesh triangle intersection segments (Seg;,) (which produce
2D shafts which are checked for intersection with the mesh
triangles M). Like the 3D mesh traversal itself, the 2D mesh
traversal only generates intersection structures (2D shafts and
rays) that are incident on visible structures (respectively seg-
ments and silhouette vertices).

The final term is the cost of determining whether the gen-
erated discontinuity mesh occlusion boundary segments are
from-viewcell occluded or unoccluded. This point-occlusion
test can be compared to the point-occlusion test used in the
third term of equation A for non-output-sensitive discontinu-
ity mesh method. Both of these point-occlusion tests test
intersections of lines with generated wedges. An important
difference is that for the 3D mesh traversal method the num-
ber of tests required is a function of the number of visible
silhouette edges, not the total number of silhouette edges.
Hence, for the 3D mesh traversal method the number of
wedges that must be intersected for each point occlusion test
is generally much lower than the prior-art method
(N*S*Spisnas vs N*S*Sg, 15).

In typical complex 3D models, the number of total silhou-
ette edges is generally much greater than the number of vis-
ible silhouette edges and is often greater than the number of
visible mesh polygons. Consequently, equation B expresses a
more output-sensitive cost function than equation A. This
reflects the favorable, output-sensitive, performance charac-
teristics of the 3D/2D method of discontinuity mesh construc-
tion.

Estimate of the Computational Cost of Constructing PAU
(Using Output-Sensitive Method of FIG. 26)

As previously described the construction of UBPs from
wedges requires the additional steps involving wedgexwedge
intersections. However the final output of this process is one
ormore (conservative) PAU which are comprised of the unoc-
cluded front-facing mesh polygons that may be connected by
UBPs which are only tangentially visible from the viewcell.
The PAU output by the process of FIG. 26 are generally much
simpler than the conservative discontinuity mesh output by
the process of FIG. 12 since the antumbral boundaries are not
present in the PAU. Consequently, the PAU method produces
many fewer “regions” that require from-viewcell visibility
testing and the testing is a simpler point-in-polyhedron test.

Equation C is an approximate expression for the upper
bounds of constructing a conservative PAU using the 3D/2D
mesh traversal method.

The terms are:

M=number of polygons in the model

N=number of edges in a viewcell

S=number of first-order silhouette edges in environment

Ssuep~number of first-order silhouette edges in a shaft
formed between a single first-order silhouette edge and the
viewcell

M,=number of visible polygons in the model

S,=number of visible first-order silhouette edges in envi-
ronment

US 9,171,396 B2

173

Sysnas—umber of visible first-order silhouette edges in a
shaft formed between a single first-order silhouette edge and
the viewcell

V,,=number of vertices of intersection between all poly-
gons and a single wedge

M, =number of mesh polygons intersecting a wedge

V,,,~number of visible (from point or from edge) silhou-
ette vertices on a wedge

Seg,,,=number of on-wedge visible segments of intersec-
tion between mesh polygons and a wedge
Equation C (Output-Sensitive Mesh Traversal Method for
Constructing PAU):

Cost = M, «LogM /«3D shaft test between visible triangles and other
triangless /+N Sy «Syspgp # (Seg,,, «LogM + Ve, « Logh) /+2
D On-wedge traversals / +(N %Sy #Sysnas LOgN # Sy # Sysnap)/ =
On- UBP intersectionss / +(ME « N? « S5 *S‘Z,Shaﬁ) ®

Log(N Sy # Sysnep)/ #Point in polyhedron tests « /

The first term is the cost of testing for untraversed mesh
polygons in the shaft between the traversed mesh polygons
and the viewcell. This term is identical to the first term in
equation B for the 3D mesh traversal method of conservative
discontinuity mesh construction.

The second term is the cost of determining on-wedge vis-
ibility and is also identical to the second term of equation B.

The third is the cost of constructing wedge-wedge inter-
sections in order to form UBPs from wedges and to resolve
the arrangement of the UBPs. Since the arrangement is
resolved for every UBP, in some embodiments, the cost is an
order of magnitude higher than for the corresponding discon-
tinuity mesh, which does not directly compute the arrange-
ment of occluded and visible volumes in 3 space but only on
the surface of the visible mesh manifold.

The final term is the cost of determining if a manifold mesh
is occluded by existing PAU. Any manifold regions that are
nottraversed by the overall process of 3D mesh traversal/PAU
construction are either completely visible from the viewcell
or completely within a PAU. The number of untraversed
manifold regions will, in the general case, be much lower than
the number of discontinuity mesh regions which tend to be
quadratic in the number of wedges. Therefore the overall cost
of'the requisite point-in-polyhedron tests for the UBP method
tend to be much lower than the from-viewcell visibility test-
ing of discontinuity mesh regions.

Mesh Traversal Implementation: Shaft Intersection Optimi-
zations and Difference Shafts

In the mesh traversal method, meshes are traversed one
mesh “element” at a time. In one embodiment, of the mesh
traversal method shown in FIG. 20, the traversed mesh ele-
ment is a polygon (triangle). Consequently, in this embodi-
ment, shafts are formed between the traversed triangle and the
viewcell in step 2010. Alternative embodiments are possible
in which shaft tests use a bounding box around a cluster of
traversed polygons (the potential occludees). In this embodi-
ment, a shaft is formed between this bounding box and the
viewcell. Mesh elements within this shaft may occlude the
potential occludees and are traversed, according to the step
2030, prior to the traversal of the potential occludees. If no
elements are within this bounding box-viewcell shaft, then
the issue of potential occlusion of entire cluster of potential
occludees is resolved with the single bounding box-viewcell
shaft. Since the shaft intersection tests are part of the inner

10

20

35

40

45

50

55

60

65

174

loop of the mesh traversal method, any optimization to these
tests can significantly improve the performance of the mesh
traversal.

If the clusters of potential occludee polygons are chosen
carefully, then this shaft test can be further simplified. Con-
nected mesh polygons that form a cluster may self-occlude. If
self occlusion is possible within a cluster, then a simple shaft
test between the cluster bounding box and the viewcell will
not identify the self occlusion, since the self occlusion occurs
within the bounding box. If, however, the cluster of potential
occludees contains no from-region silhouette edges then self
occlusion within the cluster cannot occur and the bounding
box test will identify all potential occluders. In one embodi-
ment of the mesh traversal method, clusters of polygons are
defined as connected groups of polygons which do not have
from-region silhouette edges. These clusters may be further
organized using bounding box hierarchies, which can further
accelerate the shaft tests.

The mesh traversal method can also use hierarchical
bounding boxes or other hierarchical spatial subdivision
structures to organize potential occluder polygons into hier-
archical groups or elements. This can also significantly accel-
erate the shaft intersection tests (as well as wedge-mesh poly-
gon and other intersection tests).

In the embodiment of the mesh traversal method shown in
FIG. 20, when a potentially occluding element is found to
intersect a shaft formed by an potential occludee element, and
the viewcell then traversal “jumps” to the potentially occlud-
ing element. When such a jump occurs, traversal then pro-
ceeds to adjacent mesh polygons, in the usual flood-fill
(breadth-first) pattern.

Another technique to improve the performance of shaft
intersection tests employs a difference shaft. The polygon-
viewcell shafts formed by adjacent polygons on a mesh can be
very similar, especially if the polygons are small relative to
the viewcell. In such cases it can be more efficient to perform
a shaft intersection test for one polygon and then construct the
difference shaft for the adjacent polygon. The difference shaft
is constructed for adjacent triangles using a simple process. In
this process, the polygons are assumed to be convex, in fact
triangles are specified in this embodiment.

Two triangles, triangle A and triangle B share a common
edge. The shaft between A and the viewcell is called shaft A,
and likewise for B. If A and B are joined along their common
edge, E, the result is a quadrangle Q. The shaft between Q and
the viewcell (called shaft Q) is formed in the usual way using
the pivot and sweep process to form the relevant SV-ME and
SE-MV supporting polygons. This shaft contains no SV-ME
supporting polygons incident on edge E, since E is interior to
the quadrangle and to the shaft. A shaft formed between the
edge E and the viewcell (again using the pivot and sweep
method for constructing supporting polygons) forms the
boundary of the volume that is common to both shaft A and
shaft B. Therefore the difference shaft representing shaft B
minus shaft A can be constructed by subtracting the shaft Q
from shaft B. The supporting polygons that form shaft Q
contain supporting polygons incident on both triangles A and
B. In fact those supporting polygons of Q which are support-
ing polygons of A exactly separate the shaft Q from the delta
shaft B minus A. This relationship leads to a simple and
efficient process for constructing the difference shaft: B
minus A, when the shaft A (or a difference shaft A minus
previous shaft) has already been constructed.

For new triangle B construct, by pivot, both SV-ME sup-
porting polygons incident on edges of triangle B not shared
with triangle A. Then construct, by sweep, all SE-MV sup-
porting polygons incident on the vertex of B that is not a

US 9,171,396 B2

175

vertex of edge E. Identify the single SV-ME supporting poly-
gon of shaft A that is incident on E. Reverse the normal vector
of this polygon. This SV-ME supporting polygon becomes
one boundary of the B minus A shaft. The other boundary
polygons are the SE-MV supporting polygons incident on
edge E. These polygons are formed by sweeping from the
vertices of edge E to the supporting viewcell vertices corre-
sponding to the other SV-ME supporting polygons of B.

This process allows a simple and efficient construction of
the difference shaft of two adjacent triangles by reversing the
SV-ME (previously constructed) supporting polygon of the
shared edge, and connecting it to SE-MV supporting poly-
gons of the new triangle. The process completely avoids the
need for a general purpose constructive solid geometry
method to compute the difference of the two shafts.

FIG. 27A Drawing Showing Occluded Segments of Support-
ing Polygon and Corresponding Segments of First-Order Sil-
houette Edge Supporting Inexact Wedges

Wedges constructed using the first-order pivot-and-sweep
method described in the first embodiment are exact umbral
visibility event surfaces where the corresponding supporting
polygon or swept triangle are not intersected by mesh poly-
gons.

Conversely, where the supporting polygon corresponding
to a SV-ME wedge (or the swept triangle corresponding to a
SE-MV wedge) is intersected by a polygon mesh then the
corresponding portions of the wedge may not be the exact
umbral visibility event surfaces. This is because where the
supporting polygon is intersected by mesh polygons, the sup-
porting viewcell element (vertex for SV-ME wedge, and edge
for SE-MV wedge) may be occluded when viewed from the
corresponding supported silhouette structure (silhouette edge
for SV-ME wedge, and silhouette vertex for SE-MV wedge).

Turning now to FIG. 27A, FIG. 27A is a diagram showing
a viewcell and two polygon mesh objects labeled MESH E
and MESH D.

A first-order silhouette edge on MESH D with respect to
the VIEWCELL is labeled is SE1 and is subdivided into two
segments SE10 and SE1U.

A first-order visibility event surface incident on SE1 is
labeled WEDGE4 and is subdivided into two portions
WEDGE4-EXACT and WEDGE4-APROX.

A first-order SV-ME supporting triangle incident on SE1 is
SP4. SP4 is the entire triangle between the point SVV2 and
SE1).

SVV2 is the supporting viewcell vertex of SP4 (and
WEDGE4). SP4 intersects the triangle mesh MESH E at the
point INTE. SVV2 isunoccluded when viewed from segment
SE1U of'the supporting first-order silhouette edge. Therefore,
the corresponding portion of the wedge, WEDGE4-EXACT
is an exact umbral visibility event surface.

SVV2 is occluded (by MESH E) when viewed from seg-
ment SE10 (0 for occluded) of the supporting first-order
silhouette edge. Therefore, the corresponding portion of the
wedge, WEDG4-APROX, is not an exact umbral visibility
event surface but a conservative one. A first-order wedge is
exactifand only ifits corresponding supporting polygon does
not intersect any geometry. Likewise, portions of a first-order
wedge are exact if the corresponding portions of the support-
ing polygon do not intersect any geometry.

This relationship is employed in embodiments of the
present invention as an efficient test to determine those por-
tions of a first-order wedge that are exact and those which are
approximate. This test is described in conjunction with FIG.
28. For those portions of a first-order wedge that are inexact,
in some embodiments, higher-order refinement of the corre-

20

25

30

40

45

55

176

sponding visibility event surface is conducted using one of
the backprojection methods disclosed in the present specifi-
cation.

A similar analysis applies to swept triangles and the cor-
responding SE-MV wedges. In this case, the occluded portion
of the viewcell edge is determined, according to some
embodiments, using a from-point (from-silhouette vertex)
visibility method. Occluded subsegments of the swept tri-
angle have corresponding inexact segments of the SE-MV
wedges which can be refined using the higher-order back-
projection method described later in this specification.

The case of a SE-ME wedge, where the supporting edge
and the silhouette edge are parallel, uses a from-segment
visibility method to determine those subsegments of the sil-
houette edge occluded from the source edge. In this case, the
intersection of a mesh polygon with the quadrangular sup-
porting polygon does not necessarily produce occlusion of
any subsegment silhouette edge from the viewcell edge.

In any case, if a segment of the supporting or supported
edge is occluded from the supported or supporting point then
the corresponding portion of the first-order wedge is inexact.
In such cases a supporting element of the viewcell (support-
ing viewcell vertex or edge of swept triangle) is not actually
visible from the corresponding element of the mesh silhouette
edge (first-order silhouette edge or first-order silhouette ver-
tex).

In the case where the supporting viewcell vertex (SVV) is
occluded from a segment of the corresponding first-order
silhouette edge, the corresponding first-order SV-ME wedge
is an inexact, but conservative representation of the visibility
event boundary incident on that segment of the first-order
silhouette edge. A more precise SV-ME wedge incident on
such a first-order silhouette edge segment is obtained, in some
embodiments, by subdividing the segment and identifying the
visible supporting viewcell vertices (VSVVs) for each of the
subsegments.

The VSVV is a point on that portion of the viewcell that is
actually visible from a subsegment of the first-order silhou-
ette edge and that is the supporting point between this visible
portion of the viewcell and the first-order silhouette edge
subsegment. Pivoting from the silhouette edge subsegment to
the corresponding VSVV produces an “adjusted” or “higher-
order” wedge, which conservatively accounts for partial vis-
ibility of the viewcell from the edge.

In embodiments, VSVV is found for a silhouette edge
using the method of first-order backprojection described in
conjunction with FIG. 22, FIG. 23, FIG. 24 and related fig-
ures. FIG. 27B is a diagram showing the same view as FIG.
27A and illustrating the process of constructing higher-order
umbral event wedges on the inexact first-order silhouette
edge segment (SE10) by subdividing the segment and con-
ducting first-order backprojection on the subsegments to
identify a VSVV corresponding to each of the subsegments.

The inexact first-order silhouette edge segment, labeled
SE10 in FIG. 27A, is subdivided into two subsegments
SE10-A and SE10-B in FIG. 27B.

Using subsegment SE10-A as a linear light source or linear
view region, and following the specified method of construct-
ing first-order visibility event surfaces, a (backprojection)
SV-ME wedge is formed on edge SE2 (which is also a first-
order silhouette edge with respect to SE10-A). This wedge
intersects the viewcell exactly at the point SVV2. Thus, for
subsegment SE10-A the VSVV is also the SVV (SVV2).
Consequently, the corresponding wedge (SV-ME 1) is in the
same plane as the exact wedge WEDGE4-EXACT.

Using subsegment SE10-B as a linear light source and
following the specified method of constructing first-order

US 9,171,396 B2

177

visibility event surfaces, a (backprojection) SV-ME wedge is
again formed on edge SE2 (which is also a first-order silhou-
ette edge with respect to SE10-B). This wedge intersects the
viewcell exactly at the point VSVV1. The line shown between
POINT A and VSVV1 intersects SE2. The corresponding
wedge supported by VSVV1, SV-ME 2, is an “adjusted” or
higher-order wedge.

Point A is the point of intersection of the subsegments
SE10-A and SE10-B. The SE-MV wedges incident on
POINT A are constructed using the method shown in FIG.
24C, in which the visible supporting silhouette contour (VS-
VSC) connecting the VSVVs for the corresponding adjacent
subsegments is “swept” to generate the connecting SE-MV
wedges. In the case of FIG. 27B, the two VSVVs (SVV2 for
SE10-A, and VSV V1 for SE10-B) lie on the actual edges of
the viewcell and a single SE-MV wedge, SE-MV1 is con-
structed by the process of FIG. 24C.

This single wedge connects SV-ME 1 and SV-ME 2 to form
a continuous umbral event surface which better approximates
the exact (quadric) umbral event surface incident on first-
order silhouette edge segment SE10.

FIG. 27C is a diagram showing the same view as FI1G. 27B
except that the subdivision of the inexact portion of the origi-
nal first-order wedge is now refined by subdividing the cor-
responding segment of the first-order silhouette into four
subsegments instead of two, producing an even more precise
approximation to the actual umbral event surface (a quadric)
in this region.

Using the same method as described for FIG. 27B, the
VSVV for each of the four subsegments is identified by
treating each subsegment as a linear light source and conduct-
ing first-order from-source visibility to identify portions of
the viewcell visible from the subsegments.

In the case of FIG. 27C, the four subsegments have the four
corresponding VSVVs shown. For example, the VSVV cor-
responding to the subsegment supporting SV-ME 3 is
VSV V1. This can be verified buy a using a straight edge on
the left hand edge of SV-ME 3, the extended line intersects
VSVV1 and SE2.

The connecting SE-MV wedges are constructed using the
sweep process between the corresponding VSVVs. For
example, the wedge SE-MV 2 is constructed by sweeping
between SVV2 and VSVV2, the corresponding supporting
(swept) polygon is shown as the thin lines between these two
points and the point connecting SV-ME1A and SE-MV 2.

By using a higher subdivision of the inexact first-order
silhouette edge segment, a more precise approximation to the
exact umbral event surface is obtained.

In fact, the method of subdividing inexact segments and
conducting first-order, from-subsegment visibility to con-
struct higher-order wedges amounts to a method of conser-
vatively approximating a single exact quadric surface where
the VSVVs lie on a viewcell edge and there is one intervening
edge.

Unlike previous methods of quadric construction (e.g., the
point-line-plane parameterization) the present method using
first-order backprojection insures that the constructed surface
conservatively approximates the exact quadric umbral event
surface.

FIG. 27D is a diagram of the same structures as FIG. 27A
from a different view (from slightly behind the viewcell)
showing that the first-order silhouette edge having segments
SE1U and SE1O is first-order visible from the viewcell.

30

35

45

178

FIG. 28 A Method of Controlling from-Edge Backprojec-
tion Process by Examining Maximal Possible Deviation
Between First-Order and Exact Wedge, and by Identifying
Segments of Silhouette Edge for which First-Order Wedge is
Inexact

FIG. 28 is a flowchart showing the overall process of iden-
tifying segments of first-order silhouette edges from which
the corresponding SVV is occluded, and determining a
VSVV for each of said segments by backprojection.

In embodiments, process flow starts at step 2805 upon
encountering a first-order silhouette edge. This encounter
may occur during the 3D traversal process shown in FIG. 20,
and specifically in the step 2020.

Process flow proceeds to step 2810 to construct the sup-
porting polygon using the process shown in FIG. 4. This step
would be performed as part of the construction of initial
wedges, for example in step 2040 of FIG. 20.

Process flow proceeds to decision step 2812, to determine
if the angle between the supporting polygon and the separat-
ing polygon exceed a predetermined value (VAL). The sepa-
rating plane incident on the first-order silhouette edge is
formed by pivoting to the viewcell using the opposite pivot
direction employed in constructing the supporting polygon.

According to some embodiments, using the backprojection
process, the maximum possible adjustment of a SV-ME
wedge that can be achieved occurs when the VSVV, calcu-
lated in the backprojection, is close to the viewcell vertex
intersecting the separating plane incident on the silhouette
edge.

This maximum deviation depends on the size of the view-
cell and the distance of the silhouette edge from the viewcell.
In general, especially for small viewcells, this maximum
angular deviation decreases with distance from the viewcell
as the viewcell becomes more “point-like” from silhouette
edge as backprojection light source.

Thus, if, in decision step 2812, it is determined that the
angle between the supporting polygon and the separating
plane is less than a specified value (VAL), processing pro-
ceeds to step 2814, where the SV-ME wedge is treated as
exact and no processing to “adjust” the wedge to reflect
higher-order visibility is conducted.

If, on the other hand, in decision step 2812, it is determined
that the angle between the supporting polygon and the sepa-
rating plane is greater than a specified value (VAL), process-
ing proceeds to decision step 2815 to determine if the sup-
porting polygon intersects any mesh polygons. If the
supporting polygon does not intersect any mesh polygons,
then the corresponding first-order wedge is exact and process
flow proceeds to step 2820.

In some embodiments the value of the variable VAL is
selected by a user. A high value of VAL will tend to result in
using first-order wedges, which may be less precise but faster
to generate. A low value of VAL will bias the process toward
generating higher-order wedges, which are more precise but
generally take longer to construct.

Step 2820 indicates that no adjustment of the wedge is
performed.

If, in decision step 2815, it is determined that the support-
ing polygon intersects any mesh polygons, then the process
proceeds to step 2825, where the segments of the mesh sil-
houette edge for which the SVV is occluded are determined.
If the supporting polygon is a triangle, then this problem is
equivalent to identifying the segments of the silhouette edge
that are occluded from the SVV. This is a 2D visibility prob-
lem that can be solved, in some embodiments, using a sim-
plified implementation of the 2D mesh traversal process
shown in FIG. 15. In this implementation, the 2D mesh tra-

US 9,171,396 B2

179

versal process employs from-point (SVV) silhouette vertices
in step 1520, since an exact from-point visibility solution is
required.

In some embodiments, this approach is also employed in
the special case of a SE-ME quadrangular supporting poly-
gon. In this case, the process determines the segments of the
supporting viewcell element (VCE is an edge in this case)
visible from the supported silhouette edge. In this case, the
silhouette edge definition employed in step 1520 of FIG. 15 is
from-edge. In both cases, wedge lines are constructed by
pivoting to the supporting element which is either a viewcell
point, in the case of SV-ME supporting polygons or a silhou-
ette edge for SE-ME supporting polygons. In the SE-ME case
the result of this determination on the supporting quadrangle
is a set of subsegments of the viewcell edge comprising a
backprojection visibility map from the silhouette edge onto
the viewcell edge.

The occluded sub-segments identified in step 2825 are
stored in the SEG_LIST.

In subsequent steps 2835-2855 the segments of the
SEG_LIST are processed.

Process flow proceeds from step 2825 to step 2835, where
the segment of the first-order silhouette edge for which the
SVV (or, in the case of a SE-ME supporting quadrangle,
segments of the supporting viewcell edge) is occluded is set to
be a linear light source for the backprojection process.

Process flow proceeds to step 2840, where the from-seg-
ment, on-viewcell visibility map corresponding to the seg-
ment being processed is constructed using the linear light
source of step 2835. The construction of this visibility map, in
some embodiments, uses the 3D mesh traversal process for
from-edge backprojection shown in shown in FIG. 22, FIG.
23, FIG. 24 and related figures.

Process flow proceeds to step 2845 to determine the from-
segment visible supporting viewcell silhouette contour (VS-
VSC) from the VM.

Process flow proceeds to step 2850 to determine the visible
supporting viewcell vertex (VSVV) corresponding to the seg-
ment as the supporting vertex of the VSVSC determined in
step 2845. As before, the vertex of the VSVSC producing the
smallest pivoting angle is the VSVV.

Process flow proceeds to step 2855 to adjust the first-order

wedge supported by the segment such that the wedge is not
supported by the VSVV instead of the SVV.
FIG. 29 Flowchart Showing Control of from-Edge Back-
projection Process by Examining Maximal Possible Devia-
tion Between First-Order and Exact Wedge, and by Identify-
ing Simple and Compound Inside-Corner Silhouette Vertices
for which First-Order SE-MV Wedge(s) are Inexact.

FIG. 29 is a flowchart showing the overall process of iden-
tifying segments of viewcell edges, which are occluded from
simple or compound inside corner silhouette vertices sup-
porting a swept triangle (a supporting polygon formed
between simple or compound inside corner silhouette verti-
ces and viewcell edges by the sweep process) between the
silhouette vertex and the viewcell edge.

In embodiments, process flow starts at 2905, where an
inside corner vertex of a mesh silhouette contour is encoun-
tered. As previously described, this inside corner may be a
vertex of a simple silhouette contour or it may be a vertex of
a compound silhouette vertex (CSV) caused by the intersec-
tion of a wedge and a mesh silhouette edge. The inside corner
status is determined, as previously described, using the rela-
tive orientation of the silhouette edges forming the corner
vertex.

Process flow proceeds to step 2910, to form the swept
triangles between the inside corner vertex and the extremal

20

35

40

45

50

65

180
viewcell silhouette contour as previously described using the
process shown in FIG. 5A and FIG. 5B. This step would be
performed as part of the construction of initial primary and
secondary wedges, for example in steps 2040 and 2043 of
FIG. 20.

Process flow proceeds to 2912 to determine if the angle
between the supporting polygon and the separating polygon
exceed a predetermined value (VAL). The separating plane
incident on the first-order silhouette edge is formed by pivot-
ing to the viewcell using the opposite pivot direction
employed in constructing the supporting polygon. For SE-
MYV wedges, this is determined by examining the adjacent
SV-ME wedge(s).

Thus if, in decision step 2912, is determined that the angle
between the adjacent supporting polygon and the separating
plane is less than a specified value (VAL), process flow pro-
ceeds to step 2914, where the SE-MV wedge is treated as
exact and no processing to “adjust” the wedge to reflect
higher-order visibility is conducted. An adjacent SV-ME sup-
porting polygon, by definition, lies in the supporting plane
formed by the corresponding first-order silhouette edge and
the supporting viewcell vertex. The angle between this sup-
porting plane and the separating plane (formed by pivoting
about the same first-order silhouette edge toward the viewcell
but in the opposite direction) gives that maximum possible
deviation between a the corresponding first-order wedge and
its corresponding higher-order or adjusted wedge.

If, on the other hand, in decision step 2912, it is determined
that the angle between the supporting polygon and the sepa-
rating plane is greater than a specified value (VAL), process
flow proceeds to decision step 2915 to determine if the sup-
porting polygon intersects any mesh polygons. If the support-
ing polygon does not intersect any mesh polygons then the
corresponding first-order wedge is exact and processing pro-
ceeds to step 2920 to indicate that no adjustment of the wedge
is performed. In this case, no adjustment of the wedge inci-
dent on the silhouette edge is performed.

If, in decision step 2915, it is determined that the support-
ing polygon intersects any mesh polygons, then process flow
proceeds to step 2925, where the backprojection visibility
maps VM for the silhouette edges sharing the inside corner
silhouette vertex are constructed. In embodiments, the con-
struction of this visibility map uses the 3D mesh traversal
process for from-edge backprojection shown in shown in
FIG. 22, FIG. 23, FIG. 24 and related figures. If the corre-
sponding VM for one or both of the adjacent silhouette edges
have already been constructed (for example by the process of
FIG. 28), then process flow proceeds to step 2935, where the
VSVSC are determined from the VM constructed in step
2925. The construction of each VSVSC from the VM can
include, in some embodiments, a convex simplification step.

Process flow proceeds to step 2940, where the relationship
between the VSVSC from the adjacent edges is examined and
the conservative composite VSVSC connecting the corre-
sponding the SVV and/or VSVV for each adjacent edge is
examined. This step employs the process of FIG. 24C to
determine if a convex simplification should be performed to
insure a conservative visible supporting viewcell silhouette
contour connecting the two corresponding SVV and/or
VSVV.

Process flow proceeds to step 2945 to construct the
adjusted SE-MV wedges incident on the inside corner mesh
silhouette vertex by sweeping the SVV and/or VSVV corre-
sponding to adjacent silhouette edges. This sweep connects
the SVV and/or VSVV on the shared VSVSC (or a conserva-
tive simplification of the VSVSC) determined in 2940.

US 9,171,396 B2

181

The resulting SE-MV wedges reflect the higher-order
effects of geometry which partially occludes the viewcell as
viewed from the inside corner silhouette vertex. Process flow
terminates at 2945
FIG. 30A, FIG. 30B, and FIG. 30C Comprise a Flowchart
Showing Method of Identifying from-Viewcell-Occluded
Regions in Visibility Map Having High Effective Static
Occlusion and the Process of Conservatively Simplifying
Both the Occluded Region Boundary and the Corresponding
Mesh Silhouette Contour

The 3D mesh traversal process (FIG. 20 and related fig-
ures) is an efficient method of constructing a conservative
from-viewcell visibility map. The selective use of linearized
backprojection techniques (FIG. 23 and related figures)
allows the precision of the resulting visibility map (and
related PVS) to be increased in regions where the linearized
visibility event surfaces deviate substantially from the exact
(generally quadric). This adaptive refinement comes at a cost
of increasing the number of linearized event surfaces, and
hence visibility map occlusion boundary (OB) segments,
used.

In general, a PVS derived from a visibility map computed
at a high precision results in less overdraw during runtime
rendering, since more occluded polygon area is identified and
removed.

However, each OB segment of the occlusion map also
results in additional polygons being added to the visibility
map/PVS as a consequence of retriangulation of the original
triangles intersected by the OB segment. (For one method of
retriangluation see M. de Berg, M. van Dreveld et. al in
“Computational Geometry Algorithms and Applications,
Springer c. 1997, page 45, the entire contents of which are
incorporated by reference herein). This additional geometry
tends to slow runtime rendering simply by increasing the
number of primitives submitted to the initial geometry stages
of the graphics pipeline.

In order to reduce the overall cost of runtime rendering,
embodiments include a method of balancing the reduced cost
of rasterization produced by an occluded region against the
increased cost of geometry processing incurred because of
the additional geometry introduced by the occluded region.

This method employs a heuristic called effective static
occlusion (ESO) eliminate occluded regions which corre-
spond to occluded regions of small area, especially if they
introduce large numbers of additional triangles.

In a related method, the ESO is also used to guide the
conservative simplification of occlusion boundaries, while
attempting to maximize the surface area of the occluded
region.

In some embodiments, the process of FIG. 30A-FIG. 30C
is conducted as an off-line visibility precomputation. The
result is an optimized from-region visibility map and related
PVS. A related method of efficiently storing the results of the
visibility map by labeling specific edge contours of the mesh
polygons as silhouette edges associated with occluded
regions having high effective occlusion is presented in con-
junction with FIG. 31, FIG. 34 and related figures. In this
method, the visibility map/PVS for a viewcell can be effi-
ciently computed from the visibility map/PVS of an adjacent
(or containing) viewcell at runtime using the pre-labeled sil-
houette edges. The method of FIG. 30A-FIG. 30C includes
steps to not only simplify occlusion boundaries of the visibil-
ity map, but also store this information as the corresponding
simplified silhouette contours of the original mesh objects.
This process is performed as precomputation to prepare for
the actual incremental construction of visibility map/PVS
data using the runtime methods of FIG. 36 and related figures.

10

25

40

45

182

In some embodiments, process flow starts at step 3005,
upon encountering an occluded region (OR) of a visibility
map.

Process flow proceeds to step 3007 to determine the num-
ber of original mesh triangles completely occluded in this
OR. In an alternative embodiment, the number of original
mesh triangles that are partially occluded is determined. Also
in step 3007, the image-space area of the completely and
partially occluded original mesh triangles in this OR is esti-
mated using a viewpoint inside the viewcell for which the
visibility map was constructed.

Process flow proceeds to step 3010 to determine the num-
ber of additional triangles (in the unoccluded region border-
ing the current OR) that are produced by retriangulation of the
original mesh triangles at the OR boundary.

Process flow proceeds to step 3013, where the measured
values determined in step 3007 and 3010 are employed to
determine the value of a heuristic variable called the effective
static occlusion (ESO) for the entire OR.

In some embodiments the ESO is a variable that is deter-
mined to be in some proportion to the image space area (ISA)
of the occluded triangles/triangle fragments in the OR. In
further embodiments, the ESO heuristic also includes a coef-
ficient of this term which, reflects the runtime cost of raster-
ization.

According to some embodiments, the ESO is determined to
be in some inverse proportion to the number of additional
unoccluded triangles produced in the mesh as a result of
retriangulation at the OR border. In additional embodiments
the ESO heuristic also includes a coefficient of this term,
which reflects the runtime cost of geometry processing as
well as another coefficient reflecting the storage and trans-
mission cost of the additional triangles. Although using the
incremental runtime PVS construction method of FIG. 36 and
related figures, the storage/transmission costs of these addi-
tional triangles can be eliminated by conducting the retrian-
gulation at runtime.

According to some embodiments, the ESO is represented
by the following formula: ESO=F (number of occluded poly-
gons, image space area of occluded polygons, 1/number of
new visible polygons added at occlusion boundary). In fur-
ther embodiments, the ESO can be represented by any desired
function.

Other embodiments of the present method are possible
which include additional variables in the determination of the
“effectiveness” of a particular OR in producing occlusion that
actually results in improved runtime rendering performance.

Process flow proceeds from 3013 to decision step 3015 to
determine if the ESO is greater than or equal to a specified
value, VALUEL1. If, in decision step 3015, it is determined that
the ESO is not greater than or equal to the value VALUEL1,
then process flow proceeds to step 3017, where the entire OR
is removed from the VM and the original, unretriangulated,
triangles of the polygon mesh are restored. In this regard, in
embodiments, when the ESO associated with OR is not
greater than or equal to VALUE 1, the OR is not an effective
occlusion boundary. For example, as the number of new tri-
angles created by the retriangulation process increases, the
ESO value decreases indicating that it may not be efficient to
keep the OR, which causes the retriangulation process. Pro-
cess flow terminates at 3017.

Alternate embodiments are possible in which only those
original mesh triangles that are partially occluded are restored
but the OR is kept. The partially occluded triangles are those
which produce additional triangles by retriangluation at the
boundary of the OR (the OB). By restoring only these tri-

US 9,171,396 B2

183

angles, the number of triangles in the VM is reduced but
completely occluded triangles are still removed from the
VM/PVS.

If, on the other hand, in decision step 3015 it is determined
that the ESO is greater than or equal to the value VALUEL1,
then process flow proceeds to step 3019 to determine if the
additional number of triangles constructed in the unoccluded
region bordering the current OR as a result of the OR bound-
ary, exceeds a number VALUE2.

If, in decision step 3019, itis determined that the additional
number of triangles constructed is not greater than or equal to
VALUE2, then process flow proceeds to step 3018, where the
current OR (and the triangles produced by retriangulation on
the boundary of the current OR) are kept unmodified. In this
regard, if the number of additional triangles is small, it may be
more efficient to keep the OR.

If, on the other hand, it is determined in step 3019 that the
additional number of triangles constructed is greater than or
equal to VALUE2, then process flow proceeds to step 3020.

Steps 3020-2026 implement a method attempting to reduce
the number of additional triangles induced on the adjacent
unoccluded region by conservatively removing the triangles
in the OR and adjacent exposed regions of the VM that inter-
sect the occlusion boundary of the OR. Using this approach,
the triangles in the adjacent unoccluded regions that previ-
ously were restricted at the OR occlusion boundary are now
considered to be completely unoccluded, and the restricted
triangles are replaced with the original mesh triangles. This
conservatively increases the area of the unoccluded from the
corresponding viewcell and reduces the number of triangles
by eliminating retriangulation at the occlusion boundary.

Process flow proceeds to step 3020, where the BOUND-
ARY_TRIANGLES are identified as those triangles inter-
secting/bordering the occlusion boundary of the VM occlu-
sion region.

Process flow proceeds to step 3021, where the BOUND-
ARY_TRIANGLES are removed from the OR and the cor-
responding (retriangulated) boundary triangles are removed
from the adjacent exposed region of the VM and replaced
with the original, larger, untriangulated mesh triangles. These
larger triangles include some surface area that was originally
included only in the occluded region, but after the untriangu-
lation step 0f 3021 the larger original triangles are considered
to be completely unoccluded, even though parts of the tri-
angles may be inside the occluded region.

Process flow proceeds to step 3022, where the new bound-
ary between the OR and the adjacent exposed regions is set to
the polyline boundary formed by the triangles of the OR that
are adjacent to the original mesh triangles identified in step
3021. This step conservatively redefines the boundary of the
OR to be inside the originally computed OR. It also poten-
tially reduces the complexity of the boundary and the number
of triangles in the OR by conservatively redefining the OR
boundary.

Subsequent decision step 3023 is similar to decision step
3015 and in this case determines if the simple, conservative
redefinition of the occlusion boundary along the edges of
original mesh triangles, as determined in steps 3020-3022,
has resulted in an occlusion region that occludes a sufficient
number of triangles and/or occludes triangles having a suffi-
cient image-space area.

If, in decision step 3023, it is determined that the number
and/or image-space area of the occluded triangles exceeds a
predetermined value (e.g. VALLUE44), then process flow pro-
ceeds to step 3024, where the occlusion region and adjacent
exposed regions are retained in their current state.

10

15

20

25

30

35

40

45

50

55

60

65

184

If, on the other hand, it is determined that the number of, or
ISA (image-space surface area) of triangles in the OR do not
exceed the predetermined value then process flow proceeds to
process 5-1, which starts at decision step 3025 (FIG. 30B) to
determine if the level of triangle subdivision in the OR
exceeds a certain value (e.g. VALUE4).

If, in decision step 3025, it is determined that the level of
subdivision of the triangles in the OR do not exceed the
predetermined value, then process flow proceeds to step
3026, where the triangles of the OR are further subdivided
(e.g., using midpoint-edge subdivision to create 4 triangles
from 1). This procedure, along with the test of 3025, allows
very large triangles in the OR, which also extend into adjacent
exposed regions, to be progressively subdivided into smaller
triangles until the number of triangles and/or ISA of triangles
in the occluded region exceed the value VALUE44 (step
3023) or until the level of subdivision exceeds the VALLUE4.
Process flow proceeds from 3026 to process 30-2, which
returns process flow to step 3020 (FIG. 30A).

If, in decision step 3025, it is determined that the level of
subdivision of triangles in the OR exceeds a predetermined
value, then process flow proceeds to step 3027 to conserva-
tively simplify the ORs occlusion boundary. These simplifi-
cations are executed to increase the ESO of the OR.

In step 3027 the in-order list of silhouette edges forming
the silhouette contour (from which the occlusion boundary
(OB) segments comprising the boundary of the current OR
were constructed) is stored as an array SIL_LIST. For any
inside-corner silhouette vertex (whether simple or com-
pound) the associated viewcell silhouette edges of the
VSVSC are also stored in the SIL._LIST, since they also have
corresponding wedges which contribute to the OR boundary.

Process flow proceeds to step 3028 to store the initial
segment of the array in the variable SIL.

Process flow proceeds to step 3029 to store the next seg-
ment in the SIL._LIST in the variable NEXT_SIL.

Process flow proceeds to decision step, 3031 to determine
if SIL and NEXT_SIL form an outside (convex) corner of the
silhouette contour.

If, in decision step 3031, it is determined that SIL. and
NEXT_SIL form an outside (convex) corner of the silhouette
contour (and corresponding OR boundary), then process flow
proceeds to process 30-4, which starts at step 3040, to con-
struct a SV-ME wedge on a line segment connecting the
non-shared vertices of SIL. and NEXT_SIL. Using the previ-
ously specified method of VM map construction, the wedge is
intersected with the mesh polygons to form DM_SEGS
which are tested for from-viewcell visibility to determine if
they are valid OB_SEGS of'the VM. These new conservative
OB_SEGS may intersect mesh triangles and other OB_SEGS
not intersected by the original OR boundary.

Process flow proceeds to step 3042 the ESO of the region
between the new OB and the original OB is determined and
stored in the variable D_ESO (indicating the ESO of the
difference region between the old and new OBs). This ESO
estimates the “effectiveness” of the occlusion region that has
just been removed by the conservative repositioning of the
OB.

Process flow proceeds to step 3050 to determine if the
D_ESO is less than a predetermined value VALUE3.

Ifin decision step 3050 it is determined that the D_ESO is
less than the predetermined VAL UE3, then process flow pro-
ceeds to step 3060. If the D_ESO of the difference region is
low, then the number of triangles occluded in the difference
region is small and/or they have a relatively small surface
area. Also a low D_ESO value may indicate that there are

US 9,171,396 B2

185

many partially occluded mesh triangles in the difference
region that will cause additional geometry by retriangulation.

In step 3060, reached because the difference region has a
relatively low D_ESO value, the conservative boundary of the
OR recomputed in step 3040 is saved as the new OR boundary
for the region of the map.

Process flow proceeds to step 3070, where the retriangu-
lated triangles introduced by the new OR boundary are also
optionally saved. Again mesh triangles that are partially
occluded can be conservatively considered to be unoccluded,
thereby reducing the amount of new geometry that would
have been produced by retriangluation.

Process flow proceeds to step 3080, where the data for the
two silhouette edges SIL. and NEXT_SIL, which have been
effectively collapsed into a single conservative silhouette
edge is removed from the linked list representing the labeled
from-viewcell silhouette contour of the mesh object. As dis-
cussed in detail, in conjunction with FIG. 31 and related
figures of the embodiments, the labeled silhouette edge data is
stored as a link list of data structures corresponding to simple
silhouette vertices and CSVs. In step 3080, a single node of
the linked list (CONTOUR_NODE) is modified to reflect the
collapse of the edge.

If'in decision step 3050 it is determined that the D_ESO of
the difference region is not less than a predetermined value,
then process flow proceeds to step 3084, where the original
OB is retained since the difference region tends to effectively
occlude relatively large numbers of mesh triangles or portions
of mesh triangles having a relatively large surface area with-
out introducing too many additional triangles because of
retriangulation at the OR boundary.

Process flow proceeds to step 3090, where the SIL is set to
NEXT_SIL and process flow proceeds to process 30-5, which
returns process flow to step 3029, where the SIL_LIST is
effectively incremented by setting NEXT_SIL to the next
unprocessed edge in SIL,_LIST.

If, in decision step 3031, it is determined that SIL. and
NEXT_SIL form an inside corner of the silhouette contour
corresponding to the boundary of the OR, then process flow
proceeds to process 30-3, which starts at step 3035 (FIG. 30C)
to determine if the current contour being processed corre-
sponding to the SII,_LIST is an outer contour of a occluded
region (OR) or an inside contour of the region.

If, in decision step 3035 it determined that the current
contour is an outer contour, then process flow proceeds to step
3037 to set a variable BESTSIDE to a value INSIDE.

If, in decision step 3035 it determined that the current
contour is not an outer contoutr, then is the current contour is
an inner contour and process tlow proceeds to step 3039 to set
a variable BESTSIDE to a value OUTSIDE.

Process flow proceeds step 3045, where two silhouette
edges are identified lying on both sides of SIL or SII,_NEXT
such that the edges are as close as possible on the contour (in
the contour array SIL_LIST) and such that the corresponding
wedge planes of the edges intersect to form a line that inter-
sects on the BESTSIDE of the contour; where BESTSIDE is
the INSIDE of the contour for outer contours and the OUT-
SIDE of the contour for inner contours. This insures a con-
servative simplification of the contour in the region of the
inside corner silhouette vertex (either simple or compound).
This process may “collapse” more than one edge at a time
with the span designated by the variable N.

Process flow proceeds to step 3055, where the ESO of the
region between the new OB and the original OB is determined
and stored in the variable D_ESO (indicating the ESO of the
difference region between the old and new OBs). This ESO

10

15

20

25

30

35

40

45

50

55

60

65

186

estimates the “effectiveness” of the occlusion region that has
just been removed by the conservative repositioning of the
OB.

Process flow proceeds to decision step 3065 to determine if
the D_ESO is less than a predetermined value VALUE3.

Ifin decision step 3065 it is determined that the D_ESO is
less than the predetermined VAL UE3, then process flow pro-
ceeds to step 3075. If the D_ESO of the difference region is
low then the number of triangles occluded in the difference
region is small and/or they have a relatively small surface
area. Also a low D_ESO value may indicate that there are
many partially occluded mesh triangles in the difference
region that will cause additional geometry by retriangulation.

In step 3075, reached because the difference region has a
relatively low D_ESO value, the conservative boundary of the
OR recomputed in step 3045 is saved as the new OR boundary
for the region of the map and the retriangulated triangles
introduced by the new OR boundary are also optionally
saved. Again, mesh triangles that are partially occluded can
be conservatively considered to be unoccluded, thereby
reducing the amount of new geometry that would have been
produced by retriangluation.

Process flow proceeds to step 3089, the data for the N
silhouette edges, which have been effectively collapsed into a
conservative span comprising extended silhouette edges, is
removed from the linked list representing the labeled from-
viewcell silhouette contour of the mesh object and removed
from SIL._LIST. As discussed in detail in conjunction with
FIG. 31 and related figures, the labeled silhouette edge data is
stored as a link list of data structures corresponding to simple
silhouette vertices and CSVs. Later in the process flow, in step
3080, a node of the linked list (CONTOUR_NODE) may be
modified to indicate the collapsed edge.

Ifin decision step 3065 it is determined that the D_ESO of
the difference region is not less than a predetermined value,
then process flow proceeds to step 3091, where the original
OB is retained since the difference region tends to effectively
occlude relatively large numbers of mesh triangles or portions
of mesh triangles having a relatively large surface area with-
out introducing too many additional triangles because of
retriangulation at the OR boundary.

Process flow proceeds to step 3095, where the SIL is set to
NEXT_SIL+N, N representing the span of edges replaced or
collapsed by the conservative simplification process of step
3045. Process flow proceeds to process 30-5, which returns
process flow to step 3029, where the SIL,_LIST is effectively
incremented by setting NEXT_SIL to the next unprocessed
edge in SIL_LIST.

The method of FIG. 30 applies to both simple and com-
pound silhouette contours. For compound silhouette contours
the inside corner silhouette vertices may be CSVs. The
method is applied as a post-process to a completed visibility
map. Consequently, the silhouette edges corresponding to
OB_SEGS are labeled. As previously described, during the
construction of the from-viewcell visibility map a single first-
order silhouette edge on a triangle mesh may ultimately be
subdivided into multiple visible subsegments. In addition,
each of these segments may a support an SV-ME wedge that
intersects another silhouette edge to produce a CSV with its
associated SE-MV swept wedges. In the present method, the
SIL_LIST is comprised of the individual subsegments
reflecting the visible complexity of the simple or compound
silhouette contour.

FIG. 30D is a 3D hidden-line diagram showing a viewcell
and two polygon meshes labeled MESH F and MESH G. The
diagram is a perspective view, with the mesh objects posi-
tioned generally between the viewer and the viewcell.

US 9,171,396 B2

187

MESH F is a triangle mesh representing a box-like object
having six sides. Each rectangular face of MESH F is mod-
eled as two triangles. There are 12 triangles in MESH F, only
6 are shown, the other 6 are occluded and not shown. One
triangle of MESH F is formed by the vertices labeled V1, V2,
and V3.

MESH G is a polygon mesh having 21 polygons, some of
these polygons are represented as triangles while others are
represented as rectangles. Some of these polygons are
occluded in the view.

FIG. 30E is a 3D hidden-line diagram showing the same
perspective view as FIG. 30D. In FIG. 30E a portion of the
from-viewcell visibility map, using VIEWCELL as the
source, is shown. Wedges constructed on first-order silhou-
ette edges of MESH G intersect MESH F to produce an
occlusion region labeled OR-G. The wedges are not shown
here. Occlusion region OR-G is bounded by an occlusion
boundary consisting of 7 occlusion boundary segments.
OR-G is completely inside of the original mesh triangle
formed by the vertices V1, V2, and V3.

In one embodiment, the construction of the occlusion
boundary segments bounding OR-F is constructed according
to the 3D mesh traversal process of FIG. 20A and related
figures. Specifically these occlusion boundary segments are
added to the intersected polygon in step 2045 of the exem-
plary flowchart shown in FIG. 20A.

In another step of the 3D mesh traversal process, depicted
as step 2048 in the exemplary flowchart of FIG. 20A, the
triangles intersecting or containing occlusion boundary seg-
ments are re-triangulated into occluded regions and unoc-
cluded regions. FIG. 30E shows the result of this exemplary
re-triangulation of original mesh triangle V1-V2-V3 using
the occlusion boundary segments of OR-G. During this re-
triangulation the original triangle V1-V2-V3 is re-partitioned
into 10 new triangles, one for each of the 7 occlusion bound-
ary edges of OR-G, and 3 additional triangles that result
because OR-G further partitions triangle V1-V2-V3 into 3
regions defined by vertices of OR-G.

Since occlusion region OR-G is completely inside a single
original triangle (V1-V2-V3) of MESHF, it contains no com-
plete triangles. That is, the polygon mesh (MESH G) that
induces the occlusion boundary of OR-G on MESH F does
not completely occlude even a single mesh polygon of MESH
F, using VIEWCELL as source. Thus, the number of mesh
triangles completely occluded by OR-G is 0.

Triangle V1-V2-V3 is partially occluded by MESH G. This
region of partial occlusion is the area of OR-G. In this
example the surface area of OR-G is small relative to the
surface area of the containing triangle V1-V2-V3.

In this example OR-G occludes no mesh polygons com-
pletely, and occludes a relatively small surface area of only a
single polygon. Since the effective static occlusion (ESO) of
anocclusion region is in some direct proportion to the number
of'polygons completely occluded by the occlusion region and
the surface are of completely or partially occluded polygons,
the ESO of OR-G is not substantially increased by these
factors.

The ESO of an occlusion region varies in some indirect
proportion to the number of new polygons created by re-
triangulation at the corresponding occlusion boundary. In the
example of OR-G, re-triangulation at the occlusion boundary
results in a single original triangle being partitioned into 10
new triangles.

Thus, in this example, both the direct proportional factors
of the ESO (number of polygons completely occluded and
surface area of occluded polygons) as well as the inverse
proportional factors (e.g. the number of new polygons gen-

10

15

20

25

30

35

40

45

50

55

60

65

188

erated by re-triangulation at the occlusion boundary) will
tend to produce a relatively low value for the ESO of OR-G.

As described in the exemplary flowchart of FIGS. 30A-C,
in one embodiment, OR-G which has a low ESO, can be
removed completely from the visibility map (step 3017).
Alternatively, according to the exemplary flowchart of FIGS.
30A-C, or the occlusion boundary of OR-G can be simplified
and the ESO for the simplified occlusion boundary redeter-
mined. In one method of simplification the occlusion bound-
ary is made smaller by equating it with the boundary of a
connected set of completely occluded original mesh triangles
within the occlusion region (steps 3020-3022). This results in
redefining any partially occluded polygons as exposed. In this
case only completely occluded polygons are eliminated from
the from-viewcell visibility map and corresponding PVS. In
another embodiment of simplification, the actual occlusion
boundary of the occlusion region is conservatively simplified
(steps 3023-3095).

A method of determining an ESO, in one embodiment as
described employs factors that measure the occlusion. The
determination of the ESO also includes in one embodiment
factors which reflect the number of new polygons generated
by re-partitioning at the corresponding occlusion boundary.
The method accommodates embodiments in which the rela-
tive importance of these individual factors can be tuned based
on coefficients which assign weights to each factor.
Principles of Operation: Efficient Storage of DeltaPV'S Infor-
mation Using Labeled Silhouette Edges and Incremental
Runtime Construction of Visibility Map/PVS.

PVS data, especially if derived from high-precision visibil-
ity maps, can have high storage costs. As previously
described, deltaP VS is a prior-art method of reducing storage
costs for PVS data by storing only the difference between the
PVS of adjacent viewcells. In the deltaPVS method of
Chhugani et. al (2005), the deltaPVS is a list of polygon
primitive IDs (called deltal) stored for each viewcell bound-
ary. Run-length encoding is used to store the deltal, which is
comprised of two components: deltaG+ (newly visible primi-
tives), and deltaG- (newly occluded primitives). Even with
this compression, however, the deltaPVS data is large. For a
powerplant model of 13 million triangles and 500,000 view-
cells, 7 GB is required to store the delta-PVS object IDs.

Embodiments include a method of efficiently storing
DeltaPVS using an implicit scheme in which silhouette edges
of the model that result in significant exposure or significant
occlusion of geometry for a particular viewcell-viewcell tran-
sition are identified by comparing the corresponding visibil-
ity maps. These dynamically occluding or dynamically
exposing silhouette contours are identified and labeled in an
offline visibility preprocess. The labeling employs an effi-
cient run length encoding which exploits the definition of
first-order silhouette edges to achieve significant algorithmic
compression. This run-length labeling method is presented in
detail in conjunction with FIG. 31 and related figures.

During runtime, the visibility map/PVS for a viewcell is
constructed from the visibility map/PVS of an adjacent view-
cell by:

1) Conducting a modified 3D mesh traversal of the adjacent
viewcell’s visibility map. This fast traversal uses the labeled
significantly occluding or significantly exposing silhouette
contours to rapidly construct new occlusion boundaries on the
newly constructed visibility map. Details are given in con-
junction with FIG. 32, FIG. 33, FIG. 34 and related figures.

Using these new occlusion boundaries, the newly occluded
triangles are not traversed during the runtime traversal pro-
cess. Since only traversed triangles are represented in the new
PVS, this approach effectively allows the generation ofa PVS

US 9,171,396 B2

189

that has the newly occluded triangles removed Details given
in conjunction with FIG. 35, FI1G. 36 and related figures. This
scheme significantly reduces the cost of deltaG- data storage
and transmission, by eliminating the need to explicitly store
deltaG- information (e.g. as large lists of newly occluded
triangles) in most cases.

2) Adding newly exposed geometry as deltaG+ packets,
which may include ID and/or actual geometry, associated
with the particular viewcell transition wherein the newly
exposed geometry is “attached” to boundaries of the VM
associated with new exposure. Because the from-region vis-
ibility maps can be computed at viewcell-to-triangle-frag-
ment precision many of the newly visible triangles may be
fragments of the original mesh triangles. The present method
of'incremental construction of a VM from an adjacent VM at
runtime accommodates the technique of retriangulating tri-
angles during the runtime traversal/VM construction which
avoids having to store triangle fragments in the deltaG+ pack-
ets.

In some embodiments, the method uses viewcells that are
arranged hierarchically. Relatively large parent viewcells
contain smaller child viewcells. The VM/PVS for a large
viewcell is constructed from the VM/PVS for an adjacent
large viewcell and additional deltaG+ data using the previ-
ously described incremental construction method. Since the
deltaG+ data is for a viewcell transition between large view-
cells tends to be large, the data is naturally clustered, thus
reducing the number of disk accesses required to load the
deltaG+.

The VM/PVS for child (contained) viewcells is derived
from the VM/PVS of the parent (containing) viewcell by
conducting the modified 3D mesh traversal at runtime.
Because the VM/PVS of the child viewcell is a subset of the
VM/PVS ofthe parent, the runtime 3D mesh traversal method
used to construct the child VM from the parent’s typically
only uses labeled dynamically occluding silhouette contours
to construct occlusion boundaries, which bypass the geom-
etry occluded in the transition from parent to child. This
allows construction of more precise VM/PVS for runtime
display without the need for additional deltaG+ data.

The hierarchical organization of the viewcells also facili-
tates efficient streaming of deltaPVS data. In some embodi-
ments, only deltaG+ data packets corresponding to the tran-
sition between relatively large parent viewcells needs to be
transmitted. The VM/PVS for the corresponding child view-
cells is constructed from the parent’s at runtime using only
deltaG- information (generated at runtime from the labeled
silhouette information). Streaming only parent deltaG+ infor-
mation is more efficient since typically the overall time
required to seek, access, and transmit a unit of data decreases
with increasing size of the packet.

Using the embedded labeled silhouette information and
associated deltaPVS data packets, a precision-controlled
VM/PVS is efficiently constructed from the VM/PVS of an
adjacent (sibling) viewcell (using deltaG+ packets and runt-
ime 3D mesh traversal to bypass the newly occluded tri-
angles). For a parent viewcell to child viewcell transition,
deltaG+ packets are not required since the entire VMS/PV'S
for the child viewcell is derivable by a retraversal of the
parent’s VM, using the labeled silhouette edge hint informa-
tion to bypass newly occluded triangles.

According to some embodiments, the runtime process is
conducted as a prefetch operation. During interactive walk-
through, the location of the current viewpoint is used to pre-
dict likely future viewpoint locations based on the connectiv-
ity of the viewcells (which are also navigation cells of the
model) as well as current viewpoint velocity and other fac-

10

15

20

25

30

35

40

45

50

55

60

65

190

tors. Using this informed speculative prefetch, the VM/PVS
of parent viewcells in the reachable vicinity of the current
viewcell (i.e. the viewcell containing a current actual or pre-
dicted viewpoint) are incrementally constructed and main-
tained. The set of viewcells that are reachable in a specified
period of time from the current viewcell may be constrained
factors including intrinsic navigational constraints of a view-
er’s motion, including such factors as the maximum actual or
predicted viewpoint velocity and acceleration and turning
rates and accelerations. The local structure of the modeled
environment including obstacles and other collision con-
straints can also influence the rate at which neighboring view-
cells in the reachable vicinity of a viewpoint can be visited. In
some embodiments, the construction of the child viewcell
VM/PVS is deferred until the viewcell is closer to the child
viewcell, since the construction generally does not require
streaming of deltaG+ data.

The method realizes an efficient visibility-based codec for
streaming delivery of interactive content via local or remote
server. The codec exploits the intrinsic dynamic or temporal
visibility coherence of interactive walkthroughs to minimize
the required bandwidth for on-demand streaming.

Unlike image-based streaming methods, the bandwidth
required to stream the visibility event geometry and texture
information is relatively independent of display resolution. In
fact, the present method tends to increase runtime rendering
performance at high resolutions since, at a relatively small
CPU, cost of incrementally constructing VMs at runtime, it
maintains a very precise PVS that improves both geometry
and rasterization GPU performance. Moreover, since the
codec can be implemented as a speculative prefetch; its per-
formance is, unlike image-based streaming methods, rela-
tively independent of client-server connection latency.
FIG.31A, FIG. 31B, and F1G. 31C Data Structures Employed
by the Method of Labeled Silhouette Edges

As described in the preceding section, embodiments
include a method to identify significant dynamically occlud-
ing or dynamically exposing mesh silhouette edges and label-
ing them in an offline preprocess; and later using the labeled
silhouette edges to effect incremental VM/PVS construction
during runtime.

As described in conjunction with FIG. 30, from-region
silhouette contours may also be simplified based on the effec-
tive static occlusion of the corresponding occlusion boundary
segments in the VM. As shown in FIG. 30, the simplified VM
boundary can be stored as a simplified labeled silhouette
contour (from which the simplified VM boundary will later be
constructed at runtime).

FIG. 31A includes data structures used to label simple and
compound silhouette contours.

In some embodiments, a simple silhouette contour of a
triangle manifold mesh is a connected sequence of edges
comprising a polyline. The polyline may or may not form a
cycle.

Assuming that a simple silhouette contour is unoccluded,
then using only the definition of first-order, from-viewcell
silhouette edge; an entire simple silhouette contour can be
efficiently labeled by labeling a single edge of the contour.
Given a single labeled starting edge (or a data structure point-
ing to this edge) the entire connected first-order silhouette
contour can be identified by simply finding the connected
edges and determining which connected edge is a first-order
silhouette edge. This fact is employed in the present method
to significantly reduce the cost of storing labeled silhouette
contours by identifying most silhouette contour edges at runt-
ime.

US 9,171,396 B2

191

A from-viewcell silhouette contour may be a compound
silhouette contour. A compound silhouette contour results
when a from-region visibility event surface (e.g., a UBP)
intersects a (different) silhouette edge. This intersection is a
compound silhouette vertex or CSV.

Each inside corner vertex of a contour, whether simple or
compound, can give rise to more than one from-region SE-
MYV umbral event surface (wedge/UBP) as a result of the
sweep process. Consequently, there may be more event sur-
faces incident on a contour than the number of edges or
vertices in the contour.

The data structures used to label silhouette contours are
organized, in some embodiments, as arrays of data structures
corresponding to actual event surfaces incident on actual
silhouette edges and vertices. Because adjacent silhouette
edges can be rapidly identified at runtime and because UBPs
(and the corresponding OB_SEGS of visibility maps) can be
generated at runtime; many of the elements of the array do not
actually need to be stored.

The reduced storage cost produced by the intrinsic algo-
rithmic compression realized by identifying/generating con-
tour elements at runtime can be balanced against the runtime
cost of generating this information using the contour node
information of FIG. 31A, discussed directly. This information
is used to speed the generation the unstored data at runtime.
FIG. 31A and FIG. 31B show embodiments of data structures
used to label silhouette contours.

In some embodiments, a data structure “Contour” is stored
for each contour. The data structure contains three fields
referring to a specific mesh object, an edge of the mesh, and
avertex of the edge. In storage form, all references are integer
indices to specific arrays of elements, though at runtime these
may be changed to pointers. The structure “Contour” also
contains the field int node_array, which is an index to a
specific array of data structures of the type Contour_Node.
The “struct Contour” also contains an integer field num_n-
odes which gives the length of the node_array for the contour.

The data structure “Contour” also contains an integer field,
VMinfo, which is an index to a specific element in an array of
data structures of type VM_Info. VM_info (which is
described in detail in a later part of this specification) contains
information providing the specific mesh and mesh triangle
that is intersected by the UBP associate the Contour_Node.
By precomputing this information and storing it with the
initial silhouette element of a span all of the visibility map
OB_SEGS associated with the entire span of silhouette ele-
ments encoded by the Contour_Node can be rapidly con-
structed at runtime if the associated UBPs intersect the same
triangle mesh. (This process, which exploits the intrinsic
coherence of intersecting polyhedral manifolds, is described
in detail in conjunction with FIG. 35 and related figures.)

The data structure “Contour” also contains an integer field
“last_contour” which is an index into an array of “Contour”
structures indicating a specific “Contour” to which the cur-
rent “Contour” is connected at its tail end. The data structure
“Contour” also contains an integer field “next_contour”
which is an index into an array of “Contour” structures indi-
cating a specific “Contour” to which the current “Contour” is
connected at the head end.

The data structure “Contour_Node” stores information for
individual elements of the contour. As previously indicated,
since many of the event surfaces incident on a contour can be
generated algorithmically they do not need to be stored
explicitly. Thus the array of Contour_Nodes referenced by
Contour typically has many fewer elements than the actual
silhouette contour has edges and umbral event surfaces.

10

15

20

25

30

35

40

45

50

55

60

65

192

The data structure “Contour_Node” contains a character
type field “node_type” which indicates what type of silhou-
ette contour information is contained in the node. If the node
corresponds to an outside corner of a silhouette contour then
the value of the field is set to 1. If the node corresponds to a
simple inside corner of the silhouette contour then the value
of'the field is set to 2. If the node corresponds to a compound
silhouette vertex (CSV) then the value of the field is set to 3.

The data structure “Contour_Node” also contains a char-
acter type field, span_type indicating the type of span corre-
sponding to the node. If the node represents a span of outside
corner silhouette edges for the contour then the value is set to
1. If the node represents a span that may contain both outside
and inside corners then the value is set to 2. If the node
represents a span of silhouette edges that are to be “skipped”
in order to simplify the contour (as described in conjunction
with FIG. 30 steps 3080 and 3089).

The data structure “Contour_Node” also contains an inte-
ger field indicating the length of the span represented. In
general this corresponds to the number of umbral event sur-
faces generated on the silhouette edges and vertices encoun-
tered in the span and therefore may be a larger than the
number of silhouette vertices in the span.

The data structure “Contour_Node” also contains an inte-
ger field, ninfo which is an index to a specific element in an
array of data structures which store additional information for
the node, depending on the value of the field node_type.

The data structure “OC_Info” may store additional data
referenced by a Contour_Node having node_type equal to 1.
The character field sysc stores a reference to an index of a
specific vertex of the viewcell which supports the umbral
visibility event surface (UBP) for corresponding to the first
silhouette edge in the span. This optional information could
speed the runtime generation of UBPs but increases the stor-
age size. Since a single contour can be used to generate
multiple UBPs at runtime corresponding to multiple view-
cells, this additional data may be constructed once at runtime
rather than being stored as labeled silhouette contour infor-
mation with the database.

The data structure “IC_Info” may store additional data
referenced by a Contour_Node having the node_type equal to
2. The optional character field ic_type is a hint which indi-
cates which type of construction strategy (pivot-and_sweep
or intersection of adjacent SV-ME planes) should be
employed to generate SE-MV event surfaces incident on the
inside corner at runtime. While this decision can be made at
runtime using the previously described heuristics, the runtime
test can be avoided using prestored data. Note that this hint
data can also be stored for an entire span of silhouette vertices
by storing a different value for Contour_Node, span_type
(value of 4 indicates pivot-and-sweep for all inside corner
silhouette vertices in span vs value of 5 indicates intersection
of adjacent SV-ME planes for all inside corner silhouette
vertices in span).

The data structure “IC_Info” may contain an optional char-
acter array field SVSC[4] indicating hints for the specific
viewcell vertices which form the supporting viewcell silhou-
ette contour on which the SE-MV event surfaces of the inside
corner silhouette vertex are constructed.

All of the information contained in the IC_Info data struc-
ture can be generated at runtime and therefore does not actu-
ally have to be stored with the mesh database.

The data structure CSV_Info may store additional data
referenced by a Contour_Node having the node_type equal to
3. The integer field “mesh” stores an index to a specific
triangle mesh that is intersected by the current UBP in the
contour. The integer field “edge” stores an index to a specific

US 9,171,396 B2

193

edge of the intersected triangle mesh. These two fields are
used to define the CSV which is formed at the intersection of
the UBP supported by the current element of the silhouette
contour and another silhouette edge. Once again, the fields
“mesh” and “edge” are optional since in about half the cases ;
(cases in which the current contour is being processed in a
direction which causes the associated UBP/VM contour to
“walk off” the more distant mesh) the silhouette edge inter-
sected by the UBP to form the CSV is easily determined. In
other cases in which the contour is being processed at runtime
in a direction that causes the UBPs and corresponding VM
OB_SEGS are being constructed to encounter a new mesh

The “mesh” and “edge” fields will substantially reduce the
runtime costs of incremental construction of a new VM con-
tour.

The data structure CSV_Info may also optionally store the
x,y,Z values of the CSV in the double array field point[3]. The
CSV_Info structure may also contain the optional fields char
ic_type and char SVSCJ4] as previously described in con-
junction with the data structure IC_Info.

10

15

194
Since all of the fields of the CSV_Info are optional not
every Contour_Node may link to a CSV_Info data structure,
once again reducing storage costs.

The data structure VM_Info stores information about vis-
ibility map occlusion boundary segments that are associated
with the initial silhouette elements of a Contour data struc-
ture. The storage of both the mesh and edge where the UBPs
associated with these silhouette elements intersect the VM
can be used to rapidly compute the corresponding OB_SEG
of the VM at runtime. Once the initial OB_SEG is deter-
mined, subsequent OB_SEGS of the VM occlusion boundary
polyline corresponding to the silhouette Contour can be rap-
idly generated at runtime. This is similar to the storage of
mesh and edge references in CSV_Info data structures, which
is used to accelerate runtime construction of VM data.

The data structures for labeled silhouette contours shown
in FIG. 31A and FIG. 31B, and FIG. 31C are also reproduced
below.

struct Contour

int mesh;
int edge;

// index to mesh
// index to edge of mesh

int vertex; // index to starting vertex of contour

int node__array;
int num__nodes;

int VMinfo;

int last__contour;
int next__contour;

// index to array of Contour_ Nodes

// length of coutour__node array

// index to VM__Info array

// index to next connected contour, head connected
// index to last connected contour, tail connected

char next__edge_ type // if ==1 then next edge is next connected silhouette edge

char contour_type

1

// if ==0 then next edge is next previously labeled edge
// if == 1 dynamically occluding, if == 0 dynamically exposing
// if ==2 hybrid contour

struct Contour_ Node

{

char node__type;
char span__type;

sweep

SV-ME planes

int span__length;

//'1 = outside corner, 2=simple inside corner, 3=CSV

// 1=run of outside corners only

// 2=run may contain outside and inside corners

// 3=skip span__length segments & connect to next vertex-

// forming simplified silhouette contour edge

// 4= construct SE-MV on all inside corners of run using pivot and

// 5= construct all inside corner event surfaces by intersection adjacent

// number of umbral event surfaces (UBPs) generated on

contour until next node

int ninfo;

1

// if node__type==1 then ninfo is index to OC__Info array
// if node__type==2 then ninfo is index to IC__Info array
// if node__type==3 then ninfo is index to CSV__Info array

Struct VM__Info

{

int mesh; //index to mesh containing OB__SEG corresponding to first silhouette

element in run

int triangle; // index to triangle containing OB__SEG corresponding to first silhouette

element in run

int retriangulate__hint // bitmask indicating if mesh triangles intersected by OB_SEGS

for 31 -
O=no, 1=yes

1==exposing
float point[3];
OB_SEG

1

struct OC__Info

{

char svsc;

1

// Contour_ Nodes of Contour should be retriangulated at runtime
// Last Bit indicates VM dynamic boundary type: O==occluding

// ®,y,z value of initial vertex if it is formed by intersection with other

// information for an outside corner node of

// (optional) hint for specific viewcell vertex forming UBP

US 9,171,396 B2
195

-continued

struct IC__Info
charic_type; //(optional)l= form SE-MVs by pivot and sweep
//(optional)2= intersect planes of adjacent SV-MEs

char SVSC[4];// (optional) hints for specific viewcell edges forming SVSC

H

struct CSV__Info

{

int mesh; // (optional) index to mesh containing intersected edge
int edge; // (optional) index to intersected edge

charic_type; //(optional)l= hint-form SE-MVs by pivot and sweep

//(optional)2= hint- intersect planes of adjacent SV-MEs
char SVSC[4];// (optional) hints for specific viewcell edges forming SVSC
double point[3]; // (optional) precomputed x,y,z values of vertex of CSV

;
struct tri__seed // index/pointer to specific triangles of model used to initiate

196

// simplified mesh traversal (FIG. 37A) to construct viewcell B

visibility

int tri__count;
int* mesh_ array;
int* tri_ array;

H

struct DeltaGplussubmesh__attach_ polyline

//map from viewcell A visibility map

// number of triangles in seed
// sequence of mesh ids
// sequence of triangle ids

// precomputed list of mesh edges for attaching submesh and original mesh

int contour; // reference to a specific Contour
char attach_ type;
mainmesh

// if ==0 free edges of submesh attached to free edges of

// if ==1, free edges of submesh attached to listed edges of mainmesh
// if ==2, free edges of submesh linked to free edges of mainmesh
// if == 3, free edges of submesh linked to listed edges of mainmesh

int submesh; // reference to attaching submesh
Int edgenumber;// number of edges in the attaching polyline
Int* submesh__edgelist;

// ordered list of edges in submesh which attach

int* mainmesh__edgelist; // ordered list of edges in mainmesh to which attaches

struct Triangle

{
int global_id; // global_id

int vertex[3]; // index of 3 vertices in DeltaGplussubmesh.vertexp array
int edge[3]; // index of 3 edges in DeltaGplussubmesh.edgep array
Struct Edge

int global__id;
int vertex[2];

>

struct vertex

// global id

{
int global__id;
float point[3];

// global id
// ®,y,z value of vertex

>

// index of two vertices in DeltaGplussubmesh.vertexp array

FIG. 31D is a diagram showing data structures for an
exemplary embodiment employing deltaG+ data.

In one embodiment, a deltaG+ packet of information may
be associated with each viewcell-viewcell transition. The
exemplary data structure DeltaGplus_Header includes fields
indicating the starting (viewcell_start) and ending viewcell
(viewcell_end) as well as a specific face (transition face)
for the associated transition. Another data element, deltaG-
plus_array, is a reference to an array of DeltaGplus data
structures which actually contain or reference the mesh
geometry. In some embodiments in which the deltaGplus_ar-
ray is stored in main memory, it may be accessed through a
pointer. In other instances the deltaGplus_array variable may
be an index to an array of arrays, e.g. for the disc storage form
of'the deltaG+ data. Another field deltaGplus_count stores the
number of DeltaGplus data structures in the deltaGplus_ar-
ray. An additional field packet_size indicates the storage and
transmission byte size of the associated information.

A DeltaGplus_Header references one or more DeltaGplus
data structures, which in turn references the geometry, mate-

50

55

60

65

rial, texture information for the corresponding polygon mesh.
Exemplary data structures for this information are shown as
data structures Triangle, Edge, vertex.

FIG. 32A, and FIG. 32B Flowchart Showing Method of Iden-
tifying Edges and Vertices of a Silhouette Contour Using Data
Structures for Labeled Silhouette Contours.

The flowchart of FIG. 32 shows a method of rapidly iden-
tifying all of the edges of a simple or compound, from-
viewcell silhouette contour given a few edges of the contour
that have been labeled using the data structures of FIG. 31.

The method of FIG. 32 exploits the facts that silhouette
contours generally form polylines on manifold meshes. Since
the meshes are represented as directed graphs with associated
connectivity information (using winged-edge or similar data
structures) the identification of edges connected to other
edges is simplified.

Turning now to FIG. 32A, and using the data structures of
FIG. 31 in which data elements are stored in arrays and
accessed by indices to these arrays (alternate embodiments

US 9,171,396 B2

197

may cast these references as runtime pointers). In some
embodiments, process flow starts at step 3205, where the
current vertex c_vertex is identified using the index
contour.vertex from the data structure for the current Contour.
This is the edge number of the mesh contour.mesh.

Process flow proceeds to step 3207, where the current edge
is similarly accessed using the indeed contour.edge. Also in
step 3207 an integer used to update an index into an array of
Contour_Node types, ni, is set to O.

Process flow proceeds to step 3209 to access the current
contour node, c_node using the index contour.node_array
[ni].

Process flow proceeds to decision step 3211 to determine if
the c¢_node.type is not 3. If the type is not 3, then the current
node represents data for a simple contour node and process
flow proceeds to step 3213 to set a counter segi to 0.

Process flow proceeds to decision step 3217 to determine if
the c_node.span_typeisequal to 2. Ifthe c_node.span_typeis
equal to 2 then the segments of the current contour span may
contain both outside corner and inside corner from-viewcell
silhouette vertices and process flow proceeds to step 3220.

In decision step 3220 it is determined if the vertex shared
by c_edge and next_edge is an inside-corner silhouette vertex
using the method of identifying inside corner simple silhou-
ette vertices previously specified.

If, in decision step 3220, it is determined that the two
silhouette edges form an inside corner then process flow
proceeds to step 3224.

In step 3224, the integer value p is set to equal the number
of SE-MV wedges incident on the inside corner vertex as
determined by applying the sweep construction of SE-MV
wedges (step 3228).

Process flow proceeds to step 3232, where the counter segi,
which represents the number of visibility event surfaces con-
structed for the contour span, is incremented by the number of
SE-MV event surfaces incident on the CSV.

Process flow proceeds to decision step 3229 to determine if
the value of segi is equal to the span length of the current
contour node.

If, in decision step 3229, it is determined that the value of
segi is equal to the span length, then the span has been pro-
cessed and process flow proceeds to decision step 3233.

In decision step 3233, it is determined if the value of the
integer variable ni, which is the index of the current contour
node for the contour is equal to the number of nodes in the
contour.

If'in decision step 3233 it is determined that that the current
node is the last node of the contour then process flow proceeds
to step 3237 in which the next contour is processed. Process
flow terminates at step 3237.

If, on the other hand, it is determined in decision step 3233,
that the current node is not the last node of the contour then
process flow proceeds to step 3245.

In step 3245, the node counter is advanced which is used in
step 3209 to access the next node.

Ifin, decision step 3217 it is determined that the span_type
of'the current node indicates that no inside-corner nodes exist
on the span, then process flow proceeds to step 3221.

Likewise if, in decision step 3220, it is determined that the
current silhouette edge and the next silhouette edge do not
form an inside corner, then process flow proceeds to step
3221.

In step 3221, the VM segments corresponding to the single
SV-ME UBP incident on the current edge are formed (using
the method of FIG. 36, FIG. 37 A and related figures discussed
in detail in a later part of this specification).

10

20

30

40

45

198

Process flow proceeds to step 3225, to increment the vari-
able segi by 1, consistent with the single umbral visibility
event surface constructed on the silhouette edge.

Process flow proceeds from step 3225 to decision step
3229, which was already described.

If, in decision step 3221, it is determined that the type of
node is type 3, consistent with a compound silhouette vertex
(CSV), then process flow continues to process 32-1, which
starts at step 3250 (FIG. 32B).

Process flow proceeds to step 3250 to reference additional
data in a CSV_Info node using an array index stored in
cnode.ninfo. This information gives the mesh number of the
more distant mesh containing the CSV.

Process flow proceeds to step 3255 to access the edge
number of the edge intersected by the current UBP (wherein
the intersection is the current CSV) is accessed through the
CSV_Info.

Process flow proceeds to 3260 to calculate the CSV as the
intersection of the current UBP and the C_EDGE. Alter-
nately, this value may be precalculated and stored in the
floating point CSV_Info.point[3] field of the corresponding
CSV_Info structure.

Process flow proceeds step 3265 the C_Vertex is set to the
index of the next vertex after the (on the unoccluded side) of
the CSV, and process flow proceeds to process 32-2, which
returns process flow to step 3215.

Overall, the method of FIG. 32A allows multiple edges of
a silhouette contour to be identified using only a few labeled
edges. Consequently, this labeling scheme uses very little
storage. The method exploits the natural coherence of silhou-
ette contours to facilitate the rapid runtime generation of VM
segments from a few labeled silhouette edges and associated
hint information. This runtime incremental construction of
VM/PVS using the labeled silhouette edges is discussed in
detail in conjunction with FIG. 36 and FIG. 37A

FIG. 39A, FIG. 39B show respectively, an example
occluder, and the delta regions (DR) of occlusion formed by
the simple occluder when viewed from connected viewcells A
and B. The flowcharts of FIG. 33A, FIG. 33B show a method
of'identifying connected regions of manifold triangle meshes
that are occluded when viewed from viewcell B but not
occluded when viewed from viewell A. This of course pro-
vides the solution to the problem of determining the con-
nected regions of manifold triangle meshes that are exposed
when viewed from viewcell A, but not exposed when viewed
from viewcell B.

In some embodiments, connected regions of the manifold
triangles meshes that are exposed from one viewcell but
occluded from a contiguous (or contained) viewcell are called
delta regions (DR).

A delta region corresponding to a connected region of a
manifold triangle mesh that is occluded when viewed from
viewcell B, but not occluded when viewed from viewcell A
(i.e., is in the visibility map of viewcell A) is designated
DRoAB (delta region of occlusion from A to B).

This is the same as the delta region corresponding to a
connected region of a manifold triangle mesh that is exposed
when viewed from viewcell A (i.e., is in the visibility map of
viewcell A) but occluded when viewed from viewcell B. Such
a delta region is designated as DReBA (delta region of expo-
sure from B to A).

Of course DRoAB=DReBA.

Thus, while the method of FIG. 33A and FIG. 33B shows
the determination of DRoAB, (the determination of a delta
region of occlusion from viewcell A to viewcell B), the
method is applied to determine a delta region of exposure by
reversing the order of the viewcells being processed.

US 9,171,396 B2

199

FIG. 39A shows an example polygon mesh O that acts as an
occluder to occlude a larger polygon mesh in FIG. 39B.

FIG. 39B shows a visibility map induced on the surface of
a simple mesh labeled 3910. 3910 is a rectangular polygon
mesh formed by two triangles, the triangles are not shown to
simplify the diagram.

In some embodiments, the shaded hexagonal figure labeled
“OCCLUSION REGION VIEWCELL A” is the from-view-
cell occlusion region of the simple occluder shown in FIG.
39A generated using viewcell A as the source and using the
method of first-order visibility map construction. Note that
the occlusion region has one more edge than the occluder O as
a result of the SE-MV wedge generated on the only inside
corner of the original 5-sided occluder O.

Similarly, the unshaded hexagonal figure labeled
“OCCLUSION REGION VIEWCELL B” is the from-view-
cell occlusion region of the simple occluder shown in FIG.
39A generated using viewcell B as the source and using the
method of first-order visibility map construction.

The portions of the OCCLUSION REGION VIEWCELL
B thatare outside the OCCLUSION REGION VIEWCELL A
are labeled as DR ,AB (delta region of occlusion from A to B)
and DR ;BA (delta region of exposure from B to A).

The region labeled 3920 is outside both occlusion regions
and since it is inside the region 3910, which is visible from
viewcell A and viewcell B, the region 3920 is visible from
both viewcell A and viewcell B and is not a delta region.

FIG. 40 shows the same unified from-region visibility map
as FIG. 39B except that the portions of the OCCLUSION
REGION VIEWCELL A that are outside the OCCLUSION
REGION VIEWCELL B are labeled as DR ,BA (delta region
of'occlusion from B to A) and DR zAB (delta region of expo-
sure from A to B). Here, the mesh on which the visibility map
boundaries are inscribed is labeled 4010, it is identical to
3910 in FIG. 39. The black portion of Occlusion Region
Viewcell A represents the portions of Occlusion Region
Viewcell A that are common with Occlusion Region Viewcell
B. The region labeled 4020 is outside both occlusion regions
and since it is inside the region 4010, which is visible from
viewcell A and viewcell B, the region 4020 is visible from
both viewcell A and viewcell B and is not a delta region.

Accordingly, in some embodiments, when moving from
view region B to view region A, a delta packet would include
the difference in visible portions between view region B and
view region A (i.e., delta region), which is DR ;AB. There-
fore, by transmitting delta packets that only include the delta
regions, the bandwidth requirements for transmitting graph-
ics information is reduced since the entire set of visible
graphic elements for each viewcell need not be retransmitted.

FIG. 41A is a diagram showing the use of the on-wedge
visibility method (FIG. 14, FIG. 15, and FIG. 16) to identify
CSVs and construct wedge lines for a SV-ME wedge.

FIG. 41A illustrates details of the on-wedge visibility
method of FIG. 15. Specifically FIG. 41A illustrates the use
of step 1520 to identify a CSV, and steps 1545 to construct
wedge lines (WL) incident on the CSV.

FIG. 41A is a top-down orthographic view showing a view-
cell labeled 4101. A first-order silhouette edge of some poly-
gon of a polygon mesh is labeled 4104. A SV-ME wedge
incident on first-order silhouette edge 4104 is bounded by
4104 and edges 4105 and 4106. This wedge is constructed
using the pivot method wherein the pivoting occurs on 4104
to the supporting viewcell vertex (SVV) labeled 4102.

In this example both first-order silhouette edge 4104 and
viewcell vertex 4102 lie in the plane of the orthographic

10

15

20

25

30

35

40

45

50

55

60

65

200

drawing. The other labeled viewcell vertices 4103, and 4111
are below this plane (which is not apparent in this topographic
top-down view).

The SV-ME wedge intersects a different polygon mesh
object. This intersection forms the polyline labeled 4107
which bounds the interior region labeled 4112 (inside the
corresponding polygon mesh).

The point labeled 4108 is a from-viewcell-element (in this
case from-point) silhouette vertex.

The point labeled 4108 also happens in this case to be a
point on a from-viewcell silhouette edge.

The wedge line (WL) 4109 is constructed incident on the
CSV 4115 using the pivoting step of 1545 of FIG. 15. (i.e.
pivot to the viewcell vertex supporting the first-order silhou-
ette edge intersecting the current wedge).

The point labeled 4108 is a CSV. This point corresponds to
the intersection of the SV-ME wedge (incident on 4104 and
delimited by edges 4105 and 4106) with the from-viewcell
first-order silhouette edge. This first-order silhouette edge
runs in and out of the plane of the drawing. This intersection
occurs at point 4108.

The dashed line 4110 corresponds to an edge-on view of
the first-order wedge incident on the first-order from-viewcell
silhouette edge running in and out of the plane of the drawing
at point 4108. This first-order wedge is an SV-ME wedge
having the supporting viewcell vertex labeled 4103.

The triangular region between WL 4109 and the dashed
edge 4110 is not necessarily part of the wedge. If the viewcell
vertex supporting the wedge (vertex 4109) and the viewcell
vertex supporting the intersecting first-order silhouette
wedge (vertex 4103) are not both in the same plane as the
wedge; then one or more SE-MV wedges, not in the plane of
the current wedge (delimited by edges 4104, 4105, and 4106)
will connect the current SV-ME wedge with the other SV-ME
wedge seen edge-on at dashed line 4110.

These SV-ME wedges are formed during the 3D mesh
traversal process (step 2043) using the sweep method at the
CSV.

Dashed line 4113 shows the boundary edges of one of the
SE-MV wedges connecting the two SV-ME wedges. In this
example, the SE-MV wedge is formed by a sweep from
viewcell vertex 4103 to 4111. This SE-MV connects directly
to the SV-ME wedge sharing edge 4110. This is the wedge
intersected by the current wedge at the point 4108 (the CSV).

A second SE-MV wedge formed by sweep between 4111
and 4102 is delimited by dashed line 4113 and another line
lying on top of 4109. A third SE-MV wedge connects to edge
4109 by sweeping between the line overlying line 4109 and
line 4109 itself. This SE-MV wedge is seen edge-on in FIG.
14A as overlying line 4109.

In this example, three SE-MV wedges connect the current
SV-ME wedge with the SV-ME wedge intersected by the
current wedge at the CSV point 4108.

In this case, the current wedge is an SV-ME wedge and the
visibility problem is a from-point visibility. In this case, each
on-wedge 2D discontinuity mesh point (intersection of a
wedge line with a mesh polygon) corresponds to an occlusion
boundary point from the VCE (a point). Thus, additional tests
in step 1563 need not be performed.

FIG. 41B is a diagram showing the process of on-wedge
visibility, including the construction of wedge lines for a case
in which the connecting SE-MV wedges intersect the poly-
gon mesh at the silhouette vertex, forming a cusp of the
first-order silhouette contour.

FIG. 41B shows the same first-order mesh silhouette edge
(labeled 4123) as FIG. 41 A (where the edge is labeled 4104).
The mesh polygon object 4126 is the same as the mesh poly-

US 9,171,396 B2

201
gon object 4107. The SV-ME wedges in both diagrams are
supported by exactly the same point, labeled 4121 in FIGS.
42B and 4102 in FIG. 42A. As the supporting points and the
supported silhouette edges are identical, the resulting SV-ME
wedges are also identical.

In the case of FIG. 42B the viewcell is larger, than in FIG.
41A.

In the case of FIG. 42B the from-viewcell-element silhou-
ette vertex (4127) does not correspond to a from-viewcell
first-order silhouette edge. Consequently, a surface formed by
SE-MV wedge(s) constructed on this vertex by the sweep
process intersect the polygon mesh at the vertex. This inter-
section is a cusp of the first-order silhouette contour. FIG.
41D shows a cusp (labeled CUSP) of a first-order silhouette
contour in 3D, details are discussed in conjunction with the
figure.

In the example of FIG. 42B, a SE-MV wedge is formed
between WL 4129 and line 4131. This SE-MV is formed by a
sweep between viewcell vertex 4121 (supporting the current
wedge), and viewcell vertex 4122, supporting the SV-ME on
the first-order mesh silhouette edge moving in and out of the
plane of the drawing at labeled mesh vertex 4128. In other
cases, this SE-MV wedge may not be in the plane of the
current wedge. Clearly, this SE-MV wedge intersects the
polygon mesh at the on-wedge, from-viewcell-element sil-
houette vertex 4127. Consequently, a discontinuity mesh
boundary occurs on the polygon mesh 4126 and one segment
of this boundary contains the vertex 4127 which is also an
interior vertex of the current wedge. Thus, the point 4127 is
both a point on the visible part of the polygon mesh and an
initial point on the first-order silhouette contour, making it a
cusp of the contour.

The dashed line 4130 corresponds to a SV-ME wedge that
is formed on the first-order silhouette edge intersecting 4128
(moving in and out of the plane of the drawing). The from-
viewcell visible portion of this wedge is, in general, con-
nected to the current wedge by the discontinuity mesh bound-
ary created by the intersection of the SE-MV wedge (4129-
4127-4131) with the polygon mesh. In this case, the
discontinuity mesh boundary on the surface of the polygon
mesh connects two otherwise disconnected first order silhou-
ette contours to form a continuous umbral event surface.

FIG. 41C illustrates the process of on-wedge visibility for
a SE-ME wedge using the 2D mesh traversal process of FIG.
15 and related figures.

4165 is a viewcell. In this case an edge of the viewcell with
endpoints 4163 and 4167 is a supporting viewcell edge for a
first-order mesh silhouette edge 4172. In this case edge 4172
and the supporting viewcell edge are exactly parallel and
form a SE-ME wedge. The SE-ME wedge is comprised of the
first-order silhouette edge 4172 and the lines 4174 and 4176.
The latter two lines are formed by extending the diagonal
edges of the corresponding SE-ME supporting polygon.

Three mesh objects 4170, 4188, and 4186 intersect the
wedge. The first-order UBLs incident on first-order silhouette
vertices are shown as dashed lines 4178, 4190, and 4192.

Mesh 4188 intersects the containment boundary of the
wedge at point 4193. In one embodiment of the 2D mesh
traversal process the traversal is initiated at a point intersect-
ing a previously processed wedge (e.g. another wedge sharing
edge 4147, not shown here). In this case, the polyline segment
of'mesh 4188 containing point 4193 is the starting segment of
the 2D traversal.

Traversal proceeds to the next segment, labeled 4194. The
shaft between segment 4194 and the supporting viewcell edge

10

15

20

25

30

35

40

45

50

55

60

65

202

contains segments of mesh 4170, so the traversal of mesh
4188 is suspended and traversal is jumped to 4170 (step
1510).

During the traversal of mesh 4170 the WLs 4178 and 4192
are constructed at the corresponding from-viewcell-edge sil-
houette vertices (step 1520 and 1545).

For each of the WLs, the intersection with the closest
polygon mesh object is found by ray casting (step 1555).
These intersection points, labeled 4182 and 4184 respectively
are potential occlusion boundary points.

Each of these points is tested to determine if it is otherwise
occluded from the supporting viewcell element (VCE) which
in this case is an edge. (Step 1563). This test employs the 2D
version of the modified point in polyhedron test of FIG. 25.
(point in polygon test).

In the case of points 4182 and 4184, these are proven to be
otherwise visible from the viewcell edge by the modified
point in polyhedron/polygon test using the mesh polygon
segments and other first-order WLs (including 4190). There-
fore, the points are not occlusion boundary points and do not
limit traversal.

Traversal is ultimately reinitiated on edge 4194 which is
found (in step 1520) to have a silhouette vertex. In step 1545
the WL 4190 is constructed on this from-viewcell-edge sil-
houette vertex (and from viewcell silhouette edge). In step
1555, the intersection of this WL and the closest mesh
polyline segment is determined to be point 4180.

In step 1563, point 4180 is determined to be not otherwise
visible from the supporting viewcell edge, and therefore an
occlusion boundary point. This point prevents traversal into
the occluded section of the 2D mesh 4186. This occluded
section is labeled 4195.

Traversal ultimately proceeds on the unoccluded side of
the OB point 4180 (Steps 1583 and 1585) until the contain-
ment boundary point 4196 is encountered.

FIG. 41D is a hidden-line perspective view diagram show-
ing a polygon mesh, a viewcell, and a portion of a first-order
silhouette contour including a cusp and a compound silhou-
ette vertex. The polygon mesh is labeled MESH-B1. In one
embodiment MESH-B1 is a manifold triangle mesh. In FIG.
41D some of the mesh polygon edges are not shown in order
to simplify the figure.

Three first-order silhouette edges and their associated SV-
ME wedges (supporting vertex wedges) are labeled. The
wedges are not shown in their entire semi-infinite extent.
Wedge SV-ME-WB2 is incident on first-order silhouette edge
E2. Wedge SV-ME-WB3 is incident on first-order silhouette
edge E2. Both of these wedges are supported by viewcell
vertex labeled SVV-B2.

A portion of another first-order silhouette edge is shown as
the line segment between the mesh vertex labeled VB and a
compound silhouette vertex labeled CSV-B. Another portion
of'this first-order silhouette edge is occluded in this view. (It
is occluded by wedge SE-MV-WB12.) The wedge SV-ME-
WB1 is the supporting vertex wedge incident on the entirety
of this first-order silhouette edge. Wedge SV-ME-WBI has
corresponding supporting viewcell vertex labeled SVV-B1.

The mesh vertex labeled CUSP-B is an inside-corner ver-
tex of MESH-B1. The supporting edge wedge labeled SE-
MV-WB12 is incident on CUSP-B and has a corresponding
supporting viewcell edge labeled SVE-B12.

The mesh polygon edge defined by the line segment
between vertex VB and vertex CUSP-B is not a first-order
silhouette edge since neither mesh polygon sharing the edge
is backfacing with respect to all VIEWCELL vertices. Thus,
the chain of connected first-order silhouette edges, which
includes edges E3 and E2, ends at CUSP-B.

US 9,171,396 B2

203

However, the conservative linearized umbral event surface
formed by the wedges and by their intersections with mesh
polygons is continuous at CUSP-B. The continuity is created,
in this case, by the wedge SE-MV-WB12, incident on CUSP-
B. Wedge SE-MV-WB12 intersects a mesh polygon to form
an occlusion boundary segment labeled OB-B. Wedge SE-
MV-WB12 also intersects the first-order silhouette edge on
the line formed by VB and CSV-B. The intersection of wedge
SE-MV-WBI12 with this first-order silhouette edge is the
compound silhouette vertex CSV-B. At CSV-B wedge SE-
MV-W12 divides the intersected first-order silhouette edge
into an unoccluded segment (the segment defined by VB and
CSV-B) and an occluded segment (not shown).

The three line segments E2, OB-B, and CSV-B-VB, form a
continuous first-order umbral contour on MESH-B1 which
supports a corresponding continuous linearized umbral event
surface (wedges SV-ME-WB2, SE-MV-WB12, and SV-ME-
WB1).

The intersection of wedges SE-MV-WB12 (which pro-
trudes “above” wedge SV-ME-WB1 in this view) and SV-
ME-WB1 is shown as the line of intersection labeled EDGE-
1. Embodiments which construct PAU corresponding to these
CLUES will determine this intersection. Other embodiments,
such as those that construct a from-region visibility map, may
not explicitly determine this intersection.

FIG. 33A, FIG. 33B, FIG. 33C, and FIG. 33D Comprise a
Flowchart Showing a Method of Identifying VM Regions of
Interest (ROI) In a Unified Visibilty Map Representing a
Transition From One Viewcell to a Related Viewcell and A
Method for Labeling the Silhouette Contours Corresponding
to the Occlusion Boundaries of those ROI having a High
Effective Occlusion.

The flowchart of FIG. 33A, F1G. 33B, and FIG. 33D show
an embodiment of a method of identifying connected regions
of'manifold triangle meshes, called regions of interest or ROL,
that reflect a change in visibility during a viewcell transition
(e.g., from VC A to VC B).

This flowchart also shows a method of identifying the
silhouette contour(s) corresponding to the occlusion bound-
ary (OB) or boundaries which define a ROI. Further, this
flowchart shows a method of labeling these silhouette con-
tours (using the Contour data structure and associated data
structures of FIG. 31) and storing additional associated infor-
mation with the contours (e.g. VM_Info data of FIG. 31A).

According to some embodiments, the method of FIG. 33 A-
FIG. 33D is conducted as an offline or precomputation pro-
cess. The method can identity the deltaG+ and deltaG-com-
ponents of the delta-PVS data, which can be used during a
runtime process to incrementally construct a new PVS from
an existing one. Alternatively, the method of FIG. 33A-FIG.
33D can identify and label silhouette contours corresponding
to the boundaries of ROI. This labeled silhouette contour
information can be later used to construct deltaG+ and
deltaG- data at runtime. This approach can require consider-
ably less storage/transmission resources than explicitly stor-
ing/transmitting the deltaG+ and deltaG- packets.

Ifone of the viewcells is completely contained in the other,
then the ROI corresponds to the regions visible only from the
contained viewcell. The labeled silhouette contours corre-
sponding to these type of ROI are used, in some embodi-
ments, to construct the VM of the child viewcell from the VM
of the parent at runtime (using a hinted, simplified 3D mesh
traversal), thereby avoiding in select cases the explicit storage
of deltaG- information).

If the two viewcells share a face and one is not contained
within the other (a relationship termed “contiguous”), then

25

30

40

45

65

204

the ROI correspond to delta regions (DR). For a viewcell
transition from VC A to VC B (called an AB transition), the
DR are of two types.

One type of delta region, DR ,AB (delta region of occlu-
sion from A to B) contains mesh triangle fragments visible
from viewcell A but not B. The DR,AB are also DR BA
(delta region of exposure from B to A). Likewise,
DR AB=DR ,BA. The DR ,AB corresponds to deltaG- data
for the AB transition, while the DR,AB corresponds to
deltaG+ data for the AB transition. The labeled silhouette
contours corresponding to the boundaries of these ROI can be
used to construct the deltaG+ and or deltaG- data at runtime
(also using a hinted, simplified 3D mesh traversal), thereby
avoiding, in select cases, the explicit storage of deltaG+ and
deltaG- polygon fragment information.

Turning now to FIG. 33A-FIG. 33D, in the first phase of the
process, the type of ROI to be identified for a particular
viewcell transition are specified. The ROI are specific regions
of particular unified visibility map representing the viewcell
transition. A unified visibility map for an AB transition is a
visibility map containing the mesh triangle fragments visible
from viewcell A and viewcell B, and the OB_SEGS of the
from-viewcell VM for each of the viewcells.

In some embodiments, process flow starts at step, 3305, to
determine if the viewcells for which the delta-visibility infor-
mation for particular viewcell transition is to be determined
have a parent-child (containing-contained) relationship.

Ifin decision step 3305, it is determined that the viewcells
for which the delta visibility information is to be determined
have a parent-child relationship, then process flow proceeds
to step 3307.

In step 3307, the ROI to be identified are regions visible
from the contained (child) viewcell for the specific viewcell
transition. Since the VM for a child viewcell is always a
subset of the parent viewcell, the child VM is constructed, in
some embodiments, using explicit deltaG- information com-
puted for the transition. However, if the child viewcell is
significantly smaller than the parent viewcell then the corre-
sponding deltaG- information will be relatively large. Alter-
natively, in the present method the regions of interest (ROI)
for such a transition can be set to those regions visible only
from the child viewcell. By identifying the seed triangles and
boundaries of these regions, the VM/PVS of the child view-
cell can often be determined from the VM of the parent using
much less information by conducting the simplified hinted
3D mesh traversal on the unified visibility map starting with
the seed triangles.

If, in decision step 3305, it is determined that the viewcells
for which the delta visibility information is to be determined
do not have a parent-child relationship, then process flow
proceeds to step 3309.

Step 3309 indicates that the two viewcells are contiguous
(the viewcells share a face and one is not contained within the
other). Parent-child, and contiguous relationships are two
special arrangements of two viewcells in which the transition
from one viewcell to another occurs in a volume of space that
is completely contained in the union of the two viewcells.
Using these two arrangements of viewcells, the ROI, as con-
structed later in the process, are guaranteed to completely and
conservatively reflect the newly visible and newly exposed
regions (e.g., since there are no “gaps” between the related
viewcells, no transiently visible geometry is missed).

Process flow proceeds to step 3311 to indicate that the ROI
are delta-regions of visibility (DR).

Process flow proceeds to decision step 3313 to enumerate
the various types of DR. If in decision step 3313, it is deter-

US 9,171,396 B2

205
mined that the DR to be identified are visible from VC A and
not visible from viewcell B then, process flow proceeds to
step 3315.

In step 3315, the ROI to be identified are DR AB and
DR BA.

If'in decision step 3313, it is determined that the DR to be
identified are visible from VC B and not visible from viewcell
A, then process flow proceeds to step 3317.

In step 3317, the ROI to be identified are DR AB and
DRBA.

In some embodiments, the steps 3305 through 3317 only
enumerate the types of ROI that are to be identified for a
particular viewcell transition, depending on the relationship
between the transitioning viewcells and the desired use of the
delta-visibility information. For a particular transition
between contiguous viewcells A and B in the AB direction,
both DR ,AB and DR zAB ROI types are typically identified.
Together, these two types of ROI completely describe the
visibility change (delta-VM/delta-PVS) for the viewcell tran-
sition.

Beginning in step 3319, the actual identification of these
ROI regions in the unified visibility map commences.

In step 3319, the VM for a viewcell comprising the union of
viewcell A and viewcell B is determined (e.g. using any of the
previously described methods of from-viewcell VM con-
struction). Any superset of this VM can also be used as the
starting VM on which the OB_SEGS corresponding to the
from-viewcell visibility map of both viewcells for the transi-
tion is later constructed (step 3321). This fact allows the
determination of delta-visibility information (either explicit
deltaG packets or corresponding labeled contour data) to be
solved using an efficient hierarchical decomposition of the
from-region visibility problem. In this hierarchical approach,
the triangle fragments visible from any viewcell containing
both viewcell A and viewcell B can be used as the VM on
which the unified VM for viewcell A and viewcell B is con-
structed. (This fact can also be used to reduce delta-PVS
storage requirements since the delta-PV'S data for many view-
cell transitions can ultimately be generated from the data for
a single unified visibility map corresponding to a viewcell
containing the other viewcells).

Process flow proceeds to step 3321, where the OB_SEGs
corresponding the from-viewcell visibility map determined
from viewcell A and the OB_SEGs corresponding the from-
viewcell visibility map determined from viewcell B are con-
structed on the triangle fragments visible from the viewcell
(A+B). The set of triangle fragments visible from viewcell
(A+B) together with the OB_SEGs from viewcell A and the
OB_SEGs from viewcell B is called the unified visibility map
for viewcell A and B. The construction of these OB_SEGS, in
some embodiments, employs the previously described 3D/2D
mesh traversal method (FIG. 20 and related figures) for from-
viewcell VM construction.

Of course, if viewcell A is a parent of viewcell B then the
visibility map from viewcell (A+B) constructed in step 3319
already contains of all of the mesh triangle fragments visible
from viewcell A as well as the OB_SEGS corresponding to
the from-viewcell A silhouette contours. The OB_SEGs cor-
responding to viewcell B are added in step 3321. In the case
where the two viewcells are contiguous, and/or the starting
VM being used is the superset of VM(A+B) then both sets of
OB_SEGS must generally be constructed in step 3321.

Process flow proceeds from step 3321 to process 33-1,
which starts at step 3323 (FIG. 33B). In step 3323, the unified
visibility map is traversed to define the VM regions formed by
the arrangement of OB_SEGs from both viewcell A and
viewcell B. In this traversal, a triangle is selected and traversal

10

15

20

25

30

35

40

45

50

55

60

65

206

proceeds to the boundary formed by the OB_SEGs. In this
step, the traversal of the 3D mesh occurs as a breadth-first
traversal of an already constructed unified visibility map.
Traversal proceeds to silhouette contours and the correspond-
ing occlusion boundaries where traversal is restricted. This
simple method of traversal insures that all triangles/frag-
ments of a particular ROI are traversed to the boundaries of
the RO, even if the ROI has interior holes or spans multiple
separate triangle meshes. (The previous construction of the
VM may ultimately “fuse” parts of separate triangle meshes
into a single ROI with interior holes corresponding to unoc-
cluded regions of more distant mesh triangles visible through
holes in a closer triangle mesh bounded by interior silhouette
contours.)

Process flow proceeds to step 3325 to determine if any
untraversed triangles remain in the current traversal/VM
region (i.e., untraversed triangles connected to the current
triangle wherein the connection does not require crossing an
occlusion boundary). If in step 3325, it is determined that
untraversed triangles exist in the current traversal, then pro-
cess flow proceeds to step 3327, next triangle in the traversal.

If, on the other hand, it is determined in decision step 3325
that no triangles remain in the current traversal then process
flow proceeds to step 3328 as all triangles of the current VM
region have been traversed.

In step 3328, it is determined if the unified VM region
identified in the traversal steps 3323 and 3325 is visible from
viewcell A, viewcell B, or both. In some embodiments, this is
determined using the simplified point-in-polyhedron test of
FIG. 25. In the case of a parent-child related viewcell transi-
tion, this test can be simplified somewhat since all of the
traversed regions are visible from the parent viewcell.

Alternate embodiments are possible in which the visibility
of a single point in the VM region is first determined (step
3328 and 3331)) before a traversal is initiated in the region
(step 3323). This approach allows VM regions that are not
ROI to be identified without a full traversal of the region.

Process flow proceeds to decision step 3331 to determine if
the traversed region of the VM corresponds to a region of
interest (ROI) previously established in the earlier steps
3305-3317 for the specific viewcell transition. This is deter-
mined by comparing the result of step 3328 (e.g. visible from
A, from B, from both, or from neither; the latter only being
possible if the VM being used is a superset of VM(A+B));
with the definition of the ROI determined in the earlier steps
3305-3317.

If, in decision step 3331, it is determined that the traversed
region of the unified VM is not an ROI then process flow
proceeds to decision step 3349 to determine if there are any
untraversed triangles in the VM.

If, in decision step 3349 it is determined that any untra-
versed triangles remain in the unified visibility map, then
process flow proceeds to step 3337, where the next triangle in
the unified VM (belonging a new VM region) is selected for
processing.

If, in decision step 3349, it is determined that no untra-
versed triangles remain in the unified VM (no more unified
VM regions to process) then process flow proceeds to step
3352. Process flow terminates at 3352.

If, in decision step 3331, it is determined that the traversed
region of the VM is an ROI, then process flow proceeds to step
3332.

In decision step 3332, it is determined if the current ROl is
adelta region of occlusion (DR_O) for the viewcell transition.
Ifthe ROl is a DR, then process flow proceeds to step 3334.

In step 3334, the effective static occlusion of the ROI is
determined using the metrics previously described for an

US 9,171,396 B2

207
occluded region. The value of a variable called the effective
dynamic visibility (EDV) is set to the ESO of the ROI.

If, in decision step 3332, it is determined that the current
ROl is not a DR, then process flow proceeds to step 3333.

In decision step 3333, it is determined if the current ROl is
a delta region of occlusion (DR_E) for the viewcell transition.
If'the ROl is a DR, then process flow proceeds to step 3336.

In step 3336, the effective static occlusion (ESO) of the
occluded regions surrounding the current ROI (called the
surrounding occluded regions or SOR) is determined using
the metrics and previously described for an occluded region.
The value of the variable called the effective dynamic visibil-
ity is set to the aggregate ESO of the SOR.

If, in decision step 3333, it is determined that the ROl is not
a delta region of exposure, then process flow proceeds to step
3335.

In decision step 3335, it is determined if the current ROI
corresponds to region visible from a child viewcell for the
specific parent-to-child viewcell transition. If the ROI is a
child region, then process flow proceeds to step 3338.

In step 3338, the effective static occlusion (ESO) of the
occluded regions surrounding the current ROI (called the
surrounding occluded regions or SOR) is determined using
the metrics and previously described for an occluded region.
The value of the variable called the effective dynamic visibil-
ity is set to the aggregate ESO of the SOR. Note that the
identical processing occurs for the case of a DR and a child
ROI but they are differentiated here for the sake of exposition.

Following steps 3334, 3336, or 3338, process flow pro-
ceeds to step 3346.

In decision step 3346, it is determined if the EDV (a mea-
sure of the “effectiveness” or efficiency of the current ROl in
representing delta visibility for the specific viewcell transi-
tion) for a ROI is greater than a predetermined value (e.g.
VALUE2).

If, in decision step 3346, it is determined that the EDV for
a ROI is not greater than a predetermined value (VALUE2),
then process flow proceeds to step 3340.

In decision step 3340 it is determined if the boundary of the
current region of interest (and the corresponding silhouette
contour) can be significantly simplified (e.g. using the
method of FIG. 30, in which the ESO is used as a metric to
direct the conservative simplification of the boundary). If the
ROI is a DR, then the method of FIG. 30 can be applied
directly to the region. If the ROl is a DR or Child region then
the method of FIG. 30 is applied to occluded regions sur-
rounding the current ROI (the SOR). The SOR may be
defined as the occlusion regions immediately adjacent to the
ROIL. Optionally the SOR may include other occlusion
regions connected to this set of SOR. This approach allows
the conservative simplification process to spread into adja-
cent areas in order to ultimately achieve a sufficiently simpli-
fied ROL

If, in decision step 3340, it is determined that the boundary
can be simplified, then the EDV of the new conservative
representation of the region bounded by the simplified occlu-
sion boundary is determined in decision step 3346.

If, on the other hand, it is determined that the boundary of
the current ROI cannot be simplified to achieve a target EDV
value, then process flow proceeds to step 3343.

In step 3343, the current ROI is determined to have a low
EDV and therefore, is ignored as a significant component of
delta-visibility for the current viewcell transition. In this step
if the ROI corresponds to a DR AB then the corresponding
mesh triangles inside the region are conservatively included
in the VM for viewcell A. The original triangles are included
without the new triangles that would have been induced by the

30

35

40

45

55

60

208

boundary segments of the DR. Ifthe current ROI corresponds
to a DRZAB then the corresponding mesh triangles of the
region are conservatively included in the VM for viewcell B.
The original triangles are included without the new triangles
that would have been induced by the boundary segments of
the DR.

If the unified visibility map ROI corresponds to a parent-
child viewcell transition and the EDV of the region is low,
then the geometry of the surrounding occluded regions is
conservatively included in the ROI, and the EDV of the
expanded region can be recomputed. As with the case of a
DR, the SOR region may be optionally extended into adja-
cent areas beyond the immediately bordering SOR. This
approach can identify extreme cases in which the parent and
child VM do not differ significantly. In such cases the child
ROI is removed completely.

Steps 3346, 3340, and 3343 together allow the ESV of the
region to be determined and if the value of the ESV is too low,
attempts can be made to conservatively simplify the boundary
and thereby increase the ESV. If the ESV remains below a
predetermined value then the ROI is not considered to corre-
spond to a significant region of delta-visibility for the view-
cell transition and the viewcell transition can be ignored.

Using the ESV (obtained from the ESO) as metric of the
effectiveness of an ROI significantly reduces the storage and
compute times required for the method. This is true because in
many cases small regions of occlusion or exposure would
otherwise induce large numbers of new triangles surrounding
the ROI because of retriangulation at the ROI boundary.
These regions tend to have alow ESO and therefore would not
be considered effective occluding (or exposing) regions using
the present method. Instead, for example, the newly visible
set of primitives for a specific AB transition are simply con-
servatively to the VM/PVS for viewcell A.

If, in decision step 3346, it is determined that the EDO of
the current ROI exceeds a predetermined value (e.g.
VALUE2), then process flow proceeds to process 33-2, which
starts at step 3355.

In step 3355, the storage size of the deltaG+ and/or deltaG-
(which may be deltal-information comprising pointer or
index information referencing actual newly occluded poly-
gons), or child viewcell data (if the viewcell transition is
parent-to-child) is estimated and the value of the variable SS
is set in some direct proportion to this storage size. ROI
containing many triangles/triangle fragments tend to have a
high storage cost for the corresponding deltaG+ or deltaG-
packets. The alternate storage format used by the present
method replaces explicit storage of the deltaG packets with
labeling of the silhouette contour/VM boundaries that define
the corresponding ROI. The actual deltaG information is gen-
erated only when needed using a simplified 3D mesh traversal
which employs the unified VM region boundaries generated
from the labeled silhouette contour information for the spe-
cific viewcell transition.

Process flow proceeds to step 3358, where the value of SS
is compared to a predetermined value (e.g. VALUE3). If, in
decision step 3358 it is determined that the value of SS is not
greater than VALUE3, then process flow proceeds to step
3361.

In step 3361, the deltaG data for the ROl is stored directly
and process flow proceeds to decision step 3388.

Decision step 3388 is identical to the previously described
step 3349.

If, in decision step 3358 it is determined that the value of SS
is greater than the predetermined value VALUE3, then pro-
cess flow proceeds to step 3364.

US 9,171,396 B2

209

Steps 3364 through 3385 are steps to identify the silhouette
contours corresponding to the OB_SEGS that form the
boundaries (both outer boundaries and inner boundaries,
since the ROl may contain holes) of the ROI. In these steps the
corresponding silhouette contours (which are edges and ver-
tices of the original triangle mesh plus some additional edges
corresponding to SE-MV wedges at inside corner simple and
compound silhouette vertices) are labeled and seed triangles,
one for each connected component of a ROl is identified and
stored.

Beginning at step 3364, the OB_SEGS from viewcell A
and the OB_SEGS from viewcell B forming the outer bound-
ary of the ROI and the silhouette contours corresponding to
these OB_SEGS are identified.

Process flow proceeds to step 3367, where the OB_SEGS
bounding the ROI are intersected with each other and the
intersection points are designated as IP(S) and stored with the
corresponding VM_INFO data structure for the correspond-
ing silhouette contour (data structure given in FIG. 31A).

Process flow proceeds to step 3370, where the silhouette
contours corresponding to the outer boundary of the ROI are
labeled and stored with the mesh, (including optionally Delt-
aGplus_attach_polyline info) using the data structures previ-
ously described in conjunction with FIG. 31A and FIG. 31B
and FIG. 31C.

Process flow proceeds to step 3373, where the OB_SEGS
from viewcell A and the OB_SEGS from viewcell B forming
the inner boundaries of the ROI and the silhouette contours
corresponding to these OB_SEGS are identified.

Process flow proceeds to step 3376, where the OB_SEGS
forming the inner boundaries of the ROI are intersected with
each other and the intersection points are designated as IP(S)
and stored with the corresponding VM_INFO data structure
for the corresponding silhouette contour (data structure given
in FIG. 31A).

Process flow proceeds to step 3379, where the silhouette
contours corresponding to the inner boundaries ofthe ROl are
labeled and stored with the mesh using the data structures
previously described in conjunction with FIG. 31A and FIG.
31B and FIG. 31C.

Process flow proceeds from step 3379 to process 33-4,
which starts at step 3382 (FIG. D). In step 3382, all of the
(possibly simplified) outer and inner silhouette contours cor-
responding to the for the ROI corresponding the a specific
viewcell transition are labeled and the labeled associated with
the specific viewcell transition.

Process flow proceeds to step 3385, where one triangle for
each connected component of the ROI is stored in
TRI_SEED_LIST for the specific viewcell transition.

Subsequently, process flow proceeds to step 3388 and 3390
(if no untraversed triangles exist in the VM). In some embodi-
ments, these steps are identical to the previously described
steps 3349 and 3352 respectively. If there are untraversed
triangle sin the VM, process flow proceeds to process 33-3,
which starts at step

The ROI corresponding to the parent-to-child viewcell
transition is not a delta region in the sense that the seed
triangles for this type of ROI are visible from both viewcells
for the parent-to-child viewcell transition. Using this type of
ROL the VM/PVS for a child viewcell can be efficiently
constructed from the parent VM using the outer and inner
boundaries of the ROI constructed from the corresponding
labeled silhouette contours. This construction uses the hinted,
simplified 3D mesh traversal method of FIG. 36, and FIG.
37A.

In contrast the ROI corresponding to the transition between
contiguous viewcells are delta regions (DR) of visibility.

10

25

30

35

40

45

55

65

210

Using this type of ROI, the deltaG+ and deltaG- can be
efficiently constructed from the mesh triangle/fragments vis-
ible from the viewcell A+B, together with the outer and inner
boundaries of the ROI constructed from the corresponding
labeled silhouette contours. This construction also uses the
hinted, simplified 3D mesh traversal method of FIG. 36 and
FIG. 37A.

FIG. 34 A and FIG. 34B Method of Rapid Runtime Construc-
tion of Visibility Map Occlusion Boundary Segments Using
Labeled Silhouette Contour Information for a Single Con-
tour.

As previously described, the effective delta regions (DR)s
for a viewcell transition (e.g. A to B) are identified and the
corresponding silhouette contours generating the DR occlu-
sion boundaries are established (using the method of FIG. 33)
and labeled using the data structures of FIG. 31A and FIG.
31B. This labeling is conducted as an offline process.

Once the labeled silhouette contour information is stored
(as data associated with the triangle mesh) this data can be
used at runtime to incrementally construct a visibility map
corresponding to a specific viewcell from the known visibility
map of a connected or containing viewcell.

FIG. 34 A and FIG. 34B is a flowchart showing a method of
constructing the visibility map corresponding to a specific
viewcell from the known visibility map corresponding to a
connected or containing viewcell using the previously stored
labeled silhouette contour information for the specific view-
cell transition.

In some embodiments, process flow starts at step 3405, a
labeled silhouette contour (previously generated and stored
for the specific viewcell transition being considered) is iden-
tified using the data structures associated with mesh for stor-
ing the labeled silhouette contour in formation (FIG. 31A and
FIG. 31B) using labeling methods of FIG. 30 and FIG. 33A
and FIG. 33B.

Process flow proceeds to step 3410 to set the current mani-
fold triangle mesh (MESH) to the particular mesh referenced
by the Contour.mesh field of the Contour data structure of
FIG. 31A.

Process flow proceeds to step 3415 to set the
CURRENT_EDGE (a manifold triangle mesh edge) to the
particular edge referenced by the Contour.edge field of the
Contour data structure of FIG. 31A.

Process flow proceeds to step 3420 to set the VERTEX (a
manifold triangle mesh vertex) to the particular edge refer-
enced by the Contour.vertex field of the Contour data struc-
ture of FIG. 31A.

Process flow proceeds to step 3425 to set a variable NODE-
COUNT to 0.

Process flow proceeds to step 3430, where all of the vis-
ibility map occlusion boundary segments (VM OB_SEGS)
corresponding to the CURRENT_EDGE are constructed.
These VM OB_SEGS are constructed using the process
shown in FIG. 35 and discussed in detail in conjunction with
that figure.

Process flow proceeds to step 3435, to set the variable
NODE to reference the particular Contour_Node data struc-
ture referenced by the first node of the current contour.

Process flow proceeds to step 3450 to determine if the
NODE.node_type of the current Contour_Node data struc-
ture (FIG. 31A) is type 3. If the node_type is type 3, then the
node corresponds to compound silhouette vertex and process-
ing proceeds to process 34-1, which starts at step 3455 in FIG.
34B.

In step 3455, the MESH variable (initialized in step 3410)
is now set to the particular mesh referenced by the

US 9,171,396 B2

211
CSV_INFO[NODE.NINFO].mesh referenced by the current
node, which being a node_type 3 is a compound silhouette
vertex (CSV) node

Process flow proceeds to step 3460, where the variable
NEXT_EDGE (indicating the next edge in the silhouette
contour polyline) is set to the edge referenced by the
CSV_INFO[NODE.NINFO].edge field of the CSV_Info
data structure referenced by the current contour node.

Process flow proceeds to step 3465, to set the variable
VERTEX to the vertex referenced by CSV_INFO[NODE.N-
INFO].point field of the CSV_Info data structure referenced
by the current contour node.

The effect of steps 3455, 3460, and 3465 is to connect
together two polylines on the surface of one or more manifold
triangle meshes at a single point, the compound silhouette
vertex. Having set the current MESH, NEXT_EDGE, and
VERTEX variables to reflect this fusion into a compound
silhouette contour, process flow proceeds to process 34-2,
which returns process flow to step 3480 (FIG. 34A).

If, in decision step 3450, it is determined that the
NODE_TYPE is not 3 (i.e., the node does not correspond to
a compound silhouette vertex), then process flow proceeds to
step 3470.

In step 3470, the value of a variable EDGECOUNT is
initialized to zero.

Process flow proceeds to step 3475 to set the variable
NEXT_EDGE to reference the edge of the manifold triangle
mesh that is connected to the current edge and that is also a
(first-order, from-viewcell) silhouette edge. This edge can be
easily identified based on the connectivity of the manifold
mesh and on the definition of a first-order silhouette edge (see
FIG. 3). Alternatively, the NEXT_EDGE is identified as the
edge connected to the current edge wherein the connected
edge is already labeled as a labeled silhouette contour edge.
This definition of the NEXT EDGE is used in cases in which
the silhouette contour does not shift or migrate (as a result of
“retraction of the silhouette edge previously described) sub-
stantially. This situation is established during the preprocess-
ing and stored in the struct Contour data structure next_
edge_type field. Ifthe next_edge_type has value of 0, then the
NEXT_EDGE is identified as the next connected edge that
has been previously labeled. If, on the other hand, the
next_edge_type value is 1 then the NEXT_EDGE is identi-
fied as the next connected edge that is a (first-order) silhouette
edge.

Process flow proceeds step 3480,
CURRENT_EDGE to the NEXT_EDGE.

Process flow proceeds to step 3480, where the visibility
map occlusion boundary segments (VM OB_SEGS) that
result from the intersection of the umbral visibility event
surface(s) that are supported by the current edge with the
manifold triangle meshes. These elements of the visibility
map derived from the current edge of the labeled silhouette
contour are constructed using a method shown in a flowchart
of FIG. 35 and discussed in detail in conjunction with that
figure.

Once the VM OB_SEGS generated by the current silhou-
ette edge are constructed (using the method shown in the
flowchart of FIG. 35), then process flow proceeds to step
3485.

In step 3485, the variable EDGECOUNT is incremented.

Process flow proceeds to step 3488 to determine if the
EDGECOUNT is less than the span_length for the current
node (NODE.span_length) as specified in the Contour_Node
data structure of FIG. 31A.

to set the

10

15

20

25

30

35

40

45

50

55

60

65

212

If, in decision step 3488, it is determined that the EDGE-
COUNT is less than the span_length, then process flow
returns to step 3475, where then next edge is identified.

If, on the other hand, it is determined in decision step 3488
that the EDGECOUNT is not less than the span_length, then
process flow proceeds to decision step 3490.

In decision step 3490 it is determined if the NODECOUNT
is less than the number of nodes in the contour, given by the
data field CONTOUR.num_nodes, where CONTOUR is a
reference to the current labeled silhouette contour being pro-
cessed and the data structure Contour shown in FIG. 31A is
employed.

If, in decision step 3490 it is determined that the NODE-
COUNT is less than the CONTOUR.num_nodes, then pro-
cess flow proceeds to step 3492.

In step 3492, the NODECOUNT is incremented and pro-
cessing returns to step 3435, where the next node is selected
and processing continues.

If, on the other hand, in decision step 3490 it is determined
that the NODECOUNT is not less than the CONTOUR.
num_nodes, then process flow proceeds to step 3495.

Step 3495 indicates that the labeled silhouette contour has
been processed and that processing should proceed to the next
labeled silhouette contour. Process flow terminates at step
3495.

The overall control of processing all of the labeled silhou-

ette contours for a specific viewcell transition is controlled by
the process shown in the flowchart of FIG. 36, and discussed
in detail in conjunction with that figure.
FIG. 35A and FIG. 35B Flowchart Showing a Method of
Constructing Visibility Map Occlusion Boundary Segments
Derived from a Single Silhouette Edge of a Labeled Silhou-
ette Contour.

FIG. 34 is a flowchart for identifying the individual edges
of a labeled silhouette contour given a small amount of data
stored for the entire contour using the data structures of FIG.
31A. FIG. 35 is a flowchart for a process of constructing VM
OB_SEGS derived from a single edge of the labeled silhou-
ette contour.

By calling the process of FIG. 35 during the processing of
a silhouette contour (FIG. 34, step 3482) the process of FIG.
34 effectively results in the construction of all VM_OBSEGs
for an entire labeled silhouette contour.

In some embodiments, process flow starts at step 3510
upon encountering an edge of a labeled silhouette. This cor-
responds to step 3482 of the calling process of FIG. 34.

Process flow proceeds to decision step 3520 to determine if
the span_type of the current labeled silhouette contour node
(NODE, passed from the calling process) and specified in the
Contour_Node.node_type data field specified in FIG. 31a is
equal to the value of 1.

If, in decision step 3520, it is determined that the span_type
of the current labeled silhouette contour node is equal to a
value of 1 (indicating that the silhouette edge forms an outside
corner on the labeled silhouette contour using the Con-
tour_Node.node_type data field of FIG. 31A), then process
flow proceeds to step 3540.

Instep 3540, a SV-ME wedge is constructed using the pivot
process previously described in conjunction with FIG. 4.

Process flow proceeds to step 3580 to determine if the
current silhouette edge for which the wedge has been con-
structed is the first edge in the contour.

If, in decision step 3580, it is determined that the silhouette
edge is the first edge in the contour, then process flow pro-
ceeds to step 3592.

In step 3592, the pre-stored wedge-mesh triangle intersec-
tion information is obtained from the CONTOUR.VMin-

US 9,171,396 B2

213

fo.point, CONTOUR.VMinfo.mesh, and CONTOUR.VMin-
fo.tri data fields as specified in the data structures of FIG.
31A. This point corresponds to the precomputed and pre-
stored intersection of the wedge with a specific mesh triangle
wherein the intersection is the initial OB_SEG of the chain of
VM OB_SEGS comprising the VM boundary associated with
the labeled silhouette contour. This information was previ-
ously precomputed and stored during the offline process of
identifying silhouette contours for a specific viewcell transi-
tion that produce visibility delta regions having a minimum
effective dynamic occlusion value (step 3381 of FIG. 33).
Thus, if the edge is the first edge in the labeled silhouette
contour the step 3592 generates the first OB_SEG of the
corresponding VM boundary.

If, on the other hand, it is determined in decision step 3580
that the silhouette edge being processed is not the first edge in
the contour, then process flow proceeds to step 3585.

In decision step 3585, it is determined if the current node
has CSV_Info associated with it, that is does the current
silhouette edge support a wedge that intersects another visible
silhouette edge. If so, then the Contour_Node.node_type
value will be equal to 3 (FIG. 31A) and the Contour_Node.n-
info value will be the index into an array of CSV_Info data
structures (FIG. 31B). In one embodiment CSV_Info data is
not stored with a labeled silhouette contour but instead the
initial point of each contour is defined at a CSV and therefore
the corresponding data is stored in the Contour.mesh, Con-
tour.triangle, and Contour.vertex fields.

If, in decision step 3585, it is determined that the current
node has associated CSV_Info data, then process flow pro-
ceeds to step 3590.

In step 3590, the initial VM OB_SEG data is read from the
CSV_Info[Contour_Node.inifo].mesh, CSV_Info[Con-
tour_Node.inifo].edge, and CSV_Info[Contour Node.
inifo].point data structures.

If, on the other hand, it is determined in decision step 3585,
that the current node does not have associated CSV_Info, then
process flow proceeds to step 3595.

In step 3595, the VM OB_SEG corresponding to the cur-
rent silhouette edge is constructed using VM OB_SEG mesh,
triangle, and point intersection data from the last silhouette
edge in the contour. Since the VM OB_SEGs form a polyline
on the surface of a manifold triangle mesh the construction of
a OB_SEG from an adjacent one is a straightforward piece-
wise construction of a polyline on a polyhedron.

Following either step 3590 or step 3595, process flow
proceeds to process 35-1 and process 35-2, which starts at
decision step 3596 in FIG. 35B. In decision step 3596, it is
determined if the VM_INFO.RETRIANGULATE_HINT
field is not equal to zero. This is a field of the VM_INFO data
structure of FIG. 31A and is set to a value of 1 during the
runtime construction of the visibility map if it is determined
that the effective dynamic occlusion of the bordering visibil-
ity map region would be increased by retriangulating at the
occlusion boundary.

If, in decision step 3596, it is determined that the value of
VM_INFO.RETRIANGULATION_HINT is not equal to
zero, then process flow proceeds to step 3597.

In step 3597, the triangles bordering the corresponding
occlusion boundary are retriangulated at the boundary.

If, on the other hand, it is determined in decision step 3596
that the value of VM_INFO.RETRIANGULATION_HINT
is equal to zero, then process flow proceeds to step 3599.

In step 3599, the triangles bordering the corresponding
occlusion boundary are not retriangulated at the boundary. In
this case, the triangles comprising the silhouette contour are

5

10

15

20

25

30

35

40

45

50

55

60

65

214

“linked” to the partially occluded triangles without retrian-
gulation. Process flow terminates at step 3599.

If, in decision step 3520, it is determined that the
NODE.span_type is not equal to a value of 1 then process
flow proceeds to step 3525.

In decision step 3525, it is determined if the
NODE.span_type is equal to a value of 2, then process flow
proceeds to step 3545. If the node_type is equal to a value of
2, then the contour may contain both outside and inside corner
silhouette vertices. Consequently, process flow subsequently
continues to 3545 to determine if the current silhouette edge
is involved in an outside corner or inside corner with the next
silhouette edge of the contour.

If, in decision step 3545, it is determined that the current
edge and next edge of the silhouette contour form an outside
corner, then process flow proceeds to step 3540, as previously
described.

If, on the other hand, it is determined in decision step 3545,
that the current edge and the next edge of the silhouette
contour form an inside corner, then process flow proceeds to
step 3555.

In step 3555, the SE-MV wedges incident on the inside
corner silhouette vertex are formed using the sweep process
previously described in conjunction with FIGS. 5A and 5B.
Subsequently, process flow proceeds to step 3580, as previ-
ously described.

If, in decision step 3525, it is determined that the
NODE.span_type is not equal to a value of 2, then process
flow proceeds to step 3530.

In decision step 3530, it is determined if the value of
NODE.span_type is equal to 3. If in decision step 3530 it is
determined that the value of NODE.span_type is equal to 3,
then process flow proceeds to step 3560. In this case, the
span_type indicates that the contour should be simplified by
skipping a subset of the edges of the contour during umbral
wedge/VM OB_SEG construction. This information is pre-
computed and prestored in the corresponding Contour_N-
ode.span_type and Contour_Node.span length data struc-
tures during the identification of the differential effective
static occlusion (also called the effective dynamic occlusion)
of the DRs and simplification of the silhouette contour as
shown in steps 3075 and 3089 of FIG. 30B.

In step 3560, the NODE.span length is compared to a
variable SPAN_COUNTER (which is initialized to zero
before the contour is encountered) to determine between
which vertices of the silhouette contour the simplified umbral
visibility event surface and corresponding VM OB_SEG
should be constructed. If, in decision step 3560 it is deter-
mined that the SPAN_COUNTER 1is less than the
NODE.span_length, then process flow proceeds to step 3565,
which indicates that a wedge is not formed on the current
edge.

Process flow then proceeds to step 3570 in which the cur-
rent silhouette edge is linked directly to the single OB_SEG
for the entire silhouette contour, which is ultimately con-
structed in step 3540 or 3545 when the decision step 3560
directs processing toward steps 3545 or 3540.

If, in decision step 3530 it is determined that the
NODE.span_type is not equal to a value of 3, then process
flow proceeds to step 3535.

In decision step 3535, it is determined
NODE.span_type is equal to a value of 3.

If, in decision step 3535, it is determined that the
NODE.span_type is equal to a value of 3, then process flow
proceeds to step 3575. In this case, the span_type indicates
that umbral event surfaces incident on inside corner silhouette
vertices of the contour should not be constructed using the

if the

US 9,171,396 B2

215

sweep process, but should be constructed using the simpler
method of intersecting the planes of the adjacent SV-ME
wedges.

Consequently, in step 3575, the SE-MV wedges (and the
corresponding VM OB_SEGs) are constructed using the
intersection of the planes of the adjacent SV-ME wedges and
process flow proceeds to step 3580 as previously described.

FIG. 36 is a flowchart showing a process controlling the
runtime process of constructing visibility map ROl using ROI
boundaries constructed from pre-stored labeled silhouette
contours wherein the ROI boundaries define delimit a simpli-
fied, hinted, runtime 3D mesh traversal process which
traverses the ROI.

As previously described in conjunction with FIG. 33A-
FIG. 33D, delta visibility data for a specific viewcell transi-
tion can be described as regions of interest (ROI) in a unified
visibility map containing mesh triangle fragments visible
from both viewcells and also containing the from-viewcell
occlusion boundaries corresponding to both of the viewcells.

The type of delta visibility data depends on the construc-
tion of the corresponding ROI, which depends on the rela-
tionship of the two viewcells for which the viewcell transition
is described.

Ifone of the viewcells is completely contained in the other,
then the ROI can correspond to the regions visible only from
the contained viewcell. The labeled silhouette contours cor-
responding to these type of ROI can be used to construct the
VM of'the child viewcell from the VM of the parent at runtime
(using a hinted, simplified 3D mesh traversal), thereby avoid-
ing in select cases the explicit storage of deltaG- information.

If the two viewcells share a face and one is not contained
within the other (a relationship termed “contiguous”) then the
ROI correspond to delta regions (DR). For a viewcell transi-
tion from VC A to VC B (called an AB transition) the DR are
of two types. One type of delta region, DR ,AB (delta region
of occlusion from A to B) contains mesh triangle fragments
visible from viewcell A but not B. The DR,AB is also a
DR BA (delta region of exposure from B to A). Likewise
DRAB=DR ,BA. The DR ,AB corresponds to deltaG- data
for the AB transition while the DR_AB corresponds to
deltaG+ data for the AB transition. The labeled silhouette
contours corresponding to the boundaries of these ROI can be
used to construct the deltaG+ and or deltaG- data at runtime
(also using a hinted, simplified 3D mesh traversal), thereby
avoiding in select cases the explicit storage of deltaG+ and
deltaG- polygon fragment information.

In some embodiments, process flow starts at step 3605,
where the list of all labeled silhouette contours for the specific
viewcell transition is accessed as an array LAB_CON_LIST.

Process flow proceeds to step 3610, where each of the
labeled contours in the LAB_CON_LIST is subjected to fur-
ther processing.

In a first step in the processing of a labeled silhouette
contour in the LAB_CON_LIST, process flow proceeds to
step 3615, where the edges of the labeled silhouette contour
are identified using the process shown in the flowchart of FIG.
34, and the edges are stored in the LAB_SII,_EDGE_LIST.

Process flow proceeds to step 3620, where the edges ofthe
LAB_SII._EDGE_LIST are subjected to further processing.

In a first step, in the processing of edges in the
LAB_SIL._EDGE_LIST, process flow proceeds to step 3625,
where the VM OB_SEG corresponding to an edge of the
LAB_SII._EDGE_LIST is constructed using the process
shown in the flowchart of FIG. 35.

Process flow proceeds to decision step 3630 to determine if
the LAB_SII,_EDGE_LIST is empty. If there are more edges

25

40

45

65

216

inthe LAB_SIL._EDGE_LIST to process, then nextg unproc-
essed edge is selected and processing returns to step 3620.

If, in decision step 3630, there are no more edges in the
LAB_SII._EDGE_LIST to process, then process flow pro-
ceeds to step 3635.

Indecision step 3635, it is determined if there are any more
labeled contours to process in the LAB_CON_LIST. If| in
decision step 3635, it is determined that there are more
labeled contours to process in the LAB_ CON_LIST then the
next unprocessed contour in selected and process flow returns
to step 3610.

If, on the other hand, in decision step 3635, it is determined
that there are no more labeled contours to process in the
LAB_CON_LIST, then process flow proceeds to step 3640.

In step 3640, the triangle seed list, which is a precomputed
list of references to one triangle for each of the delta regions
corresponding to a specific viewcell transition (precomputed
and stored in step 3383 of FIG. 33B) is set to an array called
TRI_SEED_LIST. In this case the triangle seed list contains
one triangle from each VM region that is unoccluded from
viewcell A (the containing viewcell) and unoccluded from
viewcell B. One seed triangle is chosen from each VM region
of VM A that is visible from viewcell A and viewcell B such
that initiating the traversal on the set of seed triangles insures
that the relevant (labeled) silhouette contours for the AB
transition is encountered during the runtime simplified 3D
mesh traversal of FIG. 37A. This selection of seed triangles
insures that the VM of viewcell B is constructed from the VM
of viewcell A by the traversal process that “shunts™ around
geometry that becomes in the AB transition using the labeled
silhouette contour information.

Process flow proceeds to step 3645, where the triangles of
the TRI_SEED_LIST are subjected to processing.

Process flow proceeds to step 3650, where a triangle of the
TRI_SEED_LIST is used to initiate a simplified manifold
mesh traversal as shown in the flowchart of FIG. 37A and
discussed in detail in conjunction with that figure. This tra-
versal identifies all of the triangles visible from viewcell B by
initiating traversal on a small subset of triangles (those in the
TRI_SEED_LIST) visible from viewcell A.

Process flow proceeds to decision step 3660 to determine if
there are any more unprocessed triangles in the TRI_
SEED_LIST.

If, in decision step 3660, there are unprocessed triangles in
the TRI_SEED_LIST then the next unprocessed triangle in
the TRI_SEED_LIST is selected and process flow returns to
step 3645.

If, on the other hand, in decision step 3660, it is determined
that there no more unprocessed triangles in the TRI_
SEED_LIST, then process flow proceeds to step 3665.

Step 3665 indicates that the specific ROI corresponding to

the delta visibility information required has been constructed
by the simplified runtime traversal. As previously discussed
this delta visibility information may actually be the set of
triangles/fragments visible from a child viewcell when the
corresponding viewcell transition corresponds is a parent-to-
child transition. Alternatively this ROI information may cor-
respond to deltaG+ and deltaG- data for a viewcell transition
between contiguous viewcells, thereby allowing the option of
generating deltaG packets when needed instead of storing all
deltaG packets for every viewcell transition. Process flow
terminates at step 3655.
FIG. 37A is the Main Process of Using Simplified, Hinted,
Runtime 3D Mesh Traversal Process to Construct ROI from
Pre-Stored Labeled Silhouette Contour Information and a
List of Seed Triangles for the Connected Components of the
ROL

US 9,171,396 B2

217

FIG. 37A is a flowchart showing an embodiment of the
directed runtime 3D traversal process that is called in step
3650 of the controlling process shown in FIG. 36.

The process shown in the flowchart of FIG. 37A is very
similar to the general 3D mesh traversal process of FIG. 20A.
The process of FIG. 20A is generally conducted as an offline
preprocess in order to construct visibility maps for the pur-
pose of precomputing and storing PVS and labeled silhouette
contour data.

In contrast, the 3D mesh traversal process of FIG. 37A is
conducted at runtime and is employed generate ROI of uni-
fied visibility maps for specific viewcell transitions. These
ROI describe changes in visibility that occur as a result of
these specific viewcell transitions.

In one type of viewcell transition, from a parent viewcell to
a contained child viewcell, the ROI contain only those tri-
angle/fragments visible from the child viewcell. This type of
ROI can be generated from the simplified, hinted, 3D mesh
traversal process of FIG. 37A when the seed triangles sup-
plied are a set of triangles comprising one triangle from each
connected component of those ROI containing triangles vis-
ible from the child viewcell.

Using these seed triangles and the related ROI boundaries
generated at from the labeled silhouette contours, causes the
simplified, hinted 3D mesh traversal process to bypass or
“shunt” polygons or polygon fragments that become newly
occluded during a specific viewcell transition (e.g. viewcell A
to viewcell B wherein viewcell B is contained within viewcell
A). This allows the removal of newly occluded polygons
and/or polygon fragments without explicitly storing the list of
polygons to be removed. This can be more efficient than using
explicit lists of polygons to be removed, if the list of polygons
to be removed is large relative to the total number of visible
polygons.

The hinted traversal method can also be used to directly
generate both deltaG- and deltaG+ packets for a viewcell
transition between two contiguous viewcells wherein one
viewcell is not contained within the other but the two view-
cells have a common face. In this case the starting VM must
contain all the polygon or polygon fragments visible from the
combined viewcell A+B. In addition the starting VM must
contain the relevant occlusion boundaries for viewcell A and
for viewcell B. (These can be generated from labeled silhou-
ette edges.) Such a visibility map is called a unified visibility
map. The unified visibility map for two connected viewcells
contains all of the polygon fragments visible from viewcell A
and visible from viewcell B (or visible from the Boolean sum
viewcell A+B). In addition the unified visibility map contains
the from-viewcell occlusion boundaries corresponding to
both viewcell A and viewcell B.

To generate a deltaG+ packet for A-to-B transition (also
called an AB ftransition) the corresponding unified VM is
traversed using a seed triangle for each connected component
of'a VM region that is occluded from A but visible from B.
This type of region is called a DR AB. Traversal is initiated
using these seed triangles and proceeds to the occlusion
boundary corresponding to viewcell A or viewcell B. The
viewcell A boundary is encountered on the occluded side
while the viewcell A boundary is encountered on the exposed
side. This corresponds the DReAB regions shown in light
gray in FIG. 40.

Table XIV summarizes the set of seed triangles needed to
initiate the hinted runtime traversal for generating deltaG+
and deltaG- packets for contiguous viewcells and shows the
side of the occlusion boundary encountered.

This method allows both deltaG+ and deltaG- packets to
be generated from a unified VM and the corresponding VM

10

15

20

25

30

35

40

45

50

55

60

65

218

occlusion boundary contours for the viewcell transition
(which can be generated from labeled silhouette contours).
Using this method the deltaG+ and deltaG- packets for each
viewcell transition do not need to be stored explicitly for
every viewcell transition. Rather they can be generated by the
hinted traversal method at any time before the packets are
needed.

Also the runtime 3D traversal method of generating delta-
visibility information can be more efficient in a distributed
client-server implementation. In regions of high spatiotem-
poral visibility coherence the same labeled contour informa-
tion can frequently be used for several specific viewcell tran-
sitions in the same region. The use of runtime 3D mesh
traversal based on the labeled silhouette information can
thereby allow incremental visibility map/PVS computation
with less transmitted data than would be required using direct
deltaG-lists of polygons to remove for each viewcell transi-
tion.

Turning now to FIG. 37A, in a first step of the simplified,
runtime traversal, process flow starts at step 3705, where the
traversal is initiated at a specific triangle in the TRI_
SEED_LIST for the specific viewcell transition.

Process flow proceeds to decision step 3715 to determine if
the traversed triangle contains a from-viewcell occlusion
boundary. These boundaries would have been constructed in
step 3620 of FIG. 36.

If, in decision step 3715 it is determined that the traversed
triangle contains a from-viewcell occlusion boundary, then
process flow proceeds to step 3735.

Process flow proceeds to step 3735, where traversal is
interrupted at the occlusion boundary. In further embodi-
ments, process flow proceeds from 3735 to process 37-1,
which returns the process flow to step 3725.

If, on the other hand, it is determined in decision step 3715
that the current traversed triangle does not contain an occlu-
sion boundary, then process flow proceeds to step 3720.

In decision step 3720 it is determined if the currently tra-
versed triangle has a silhouette edge corresponding to a
labeled silhouette edge for the specific viewcell transition
being considered. These labeled silhouette edges correspond
to inner boundaries of the corresponding ROI of the unified
VM.

If, in decision step 3720, it is determined that the currently
traversed triangle does not have a silhouette edge, then pro-
cess flow proceeds to step 3725.

In step 3725, the next (connected) un-traversed triangle in
the mesh is selected and submitted to step 3715 and subse-
quent steps for processing.

If, on the other hand, it is determined in decision step 3720
that the current triangle dos contain a labeled silhouette edge
for the current viewcell transition, then process flow proceeds
to step 3780.

In decision step 3780 it is determined if any un-processed
(un-traversed) triangles exist in the current “traversal”, where
a traversal is defined here as the set of mesh polygons con-
nected by non-labeled-silhouette edges and on the unoc-
cluded side of occlusion boundaries for the specific viewcell
transition as constructed in step 3625 of FIG. 36.

If, in decision step 3780, it is determined that there are
un-traversed triangles in the current traversal, then process
flow proceeds to step 3725, where the next triangle in the
traversal is selected for processing as previously described.

If, on the other hand it is determined in decision step 3780
that no un-traversed triangles exist in the current traversal,
then process flow proceeds to step 3788.

In step 3788 the traversal is continued on the unoccluded
sides of the occlusion boundary segment(s) constructed in

US 9,171,396 B2

219

step 3625 of FIG. 36; wherein said occlusion boundary cor-
responds to the labeled silhouette edge encountered in step
3720. This continuation may involve continuing the traversal
on triangles that were retriangulated (i.e. trimmed exactly at
the occlusion boundary) or it may involve continuing the
traversal on the unoccluded side of triangles that were not
retriangulated at the boundary. Process flow terminates at step
3788.

FIG. 37B, Method of Precomputing and Storing Signifi-
cant Occlusion and Silhouette Boundaries for a Viewcell-
Viewcell Transition Using Mesh Traversal.

FIG. 37B is an exemplary flow diagram showing a method
of identifying and storing significant viewcell-viewcell
occlusion and silhouette boundaries using mesh traversal.

The diagram of FIG. 37B is analogous to FIG. 33A-FIG.
33D. FIG. 33 and related figures describe a method of iden-
tifying significant occlusion boundaries for a specific view-
cell transition. In the method of FIG. 33, the occlusion bound-
aries are effectively stored by labeling the associated
silhouette contours as labeled polylines.

The labeled silhouette contours produced by the method of
FIG. 33A-FIG. 33D are stored and later transmitted to a client
process which generates the corresponding occlusion bound-
aries during runtime using the method of FIG. 37A and
related figures. Using this method, a very high precision
occlusion boundary for the viewcell transition (used to derive
the new VM/PVS from the old one) can be constructed at
runtime at a modest computational cost incurred by the client.

The exemplary flow diagram of FIG. 37B shows an alter-
nate method of encoding significant occlusion boundaries
and silhouette contours.

In the method of FIG. 37B, significant occlusion bound-
aries and silhouette contours identified by any method (in-
cluding the methods of FIG. 12, FIG. 20A1, FIG. 33A-FIG.
33D) are post-processed using a mesh traversal process in
which the significant occlusion or silhouette edges are stored
by identifying their “encounter number” during the mesh
traversal. The encounter number (EN) of a mesh edge reflects
the order in which the edge is encountered during a determin-
istic traversal of the mesh. Occlusion boundaries and silhou-
ette contours tend to form chains of edges which can be
represented by a run-length encoding of the encounter num-
bers. This method allows efficient storage and transmission of
the occlusion boundaries and/or silhouette contour informa-
tion, which can be used by the client to rapidly generate a
corresponding PVS or delta-PVS.

A general description of the method of exemplary flow
diagram 37B (encoding) and 37C (decoding) using traversal
encounter numbers is presented next, followed by a detailed
description of FIG. 37B.

The traversal process starts with a seed triangle for each
connected component of the VM/PVS or delta-VM/delta-
PVS. In one embodiment, traversal proceeds using the
breadth-first method in which the traversal develops in a
flood-fill pattern, forming frontier boundaries on the outer
regions of the traversal. A depth-first traversal can also be
employed as it also forms a coherent frontier boundary or
concentric rings of traversed triangles and edges. During the
traversal, the encounter number (EN) of each edge in the
traversal is updated to reflect the number of edges currently
processed in the traversal. When the traversal encounters a
significant silhouette contour or a triangle edge that is com-
pletely on the occluded side of a significant occlusion bound-
ary, then the corresponding EN numbers are stored and the
traversal is terminated at these terminal frontier boundaries
that define the limits of the connected components of the
corresponding VM/PVS. Because the edges of which form

20

40

45

50

220

these boundaries (silhouette contours or occlusion bound-
aries) tend to occur in sequences, entire boundaries or sec-
tions of boundaries can often be efficiently stored using a
run-length compression.

In a subsequent runtime process, shown in FIG. 37C, these
stored EN numbers representing the limits of the mesh tra-
versal conservatively defining the boundaries of the con-
nected components of the VM/PVS are employed to control a
runtime mesh traversal in order to construct these connected
components during runtime using only the stored seed tri-
angles and EN numbers. Whereas the runtime method of FIG.
37A, employs a hinted manifold mesh traversal to previously
labeled edges; the present method of FIG. 37C employs a
hinted traversal which does not require explicit processing of
previously labeled edges. Both methods can employ edges
which are original triangle mesh edges and edges which are
significant occlusion boundary edges added to the mesh dur-
ing from-region visibility precomputation.

Turning now to FIG. 37B, in a first step 3740 the traversal
of'the VM/PVS is initiated using a pre-stored seed triangle of
the connected component of the VM/PVS. In subsequent step
3742, triangle edges are encountered during the mesh tra-
versal, with the current edge of the traversal being designated
EN, the current number of edges thus far encountered in the
specific traversal starting from the seed triangle.

In subsequent step 3744 is determined if the current edge,
corresponding to ENth edge encountered in the traversal, is
completely on the occluded side of a significant occlusion
boundary or is itself a significant occlusion boundary (SIG
OB). These occlusion boundaries would have been identified
in the exemplary manifold mesh traversal process described
in conjunction with FIG. 20A1 and related figures or, in
alternative embodiments, in the exemplary non-output sensi-
tive method of FIG. 12 and related figures. In some embodi-
ments, if the edge EN is completely within an occluded
region, then the current traversal post-process records this EN
of'the traversal as corresponding to a new, conservative occlu-
sion boundary for the connected component of the VM/PVS.
The situation in which traversal proceeds to a completely
occluded edge will occur if, during the construction of the
from-region visibility map, an occlusion boundary edge
(which would otherwise prevent the traversal to the occluded
edge) was not constructed. In other embodiments, the
encountered edge in step 3744 may be a significant occlusion
boundary (SIG OB) as determined in, in some exemplary
embodiments using the method shown in the exemplary flow
diagram of FIG. 33A-FIG. 33D.

If, in step 3744, it is determined that the edge is a new
conservative occlusion boundary then processing proceeds to
step 3748.

In step 3748 the number of the current edge in the traversal,
EN, is stored as an edge of the “terminal frontier boundary”
for the traversal. In a separate runtime process (described in
conjunction with FIG. 37C) runtime traversal will be termi-
nated at terminal frontier boundary edges, thereby allowing
the construction of conservative connected components of the
VM/PVS at runtime from the stored encounter numbers
(EN)s.

In subsequent step 3751, a sequences of edges encountered
during the traversal and forming a terminal frontier boundary,
either as a result of occlusion (step 3744) or as a result of
being part of a silhouette contour (step 3746), are stored using
run-length encoding by storing the initial EN of the sequence
and the subsequent number of edges in the sequence.

If, in decision step 3744, it is determined that the edge is not
completely on the occluded side of a significant occlusion
boundary, then processing proceeds to step 3746. In decision

US 9,171,396 B2

221

step 3746, it is determined if the edge EN is a significant
silhouette edge for the VM/PVS. Once again, the determina-
tion of whether an edge is a significant silhouette edge for the
VM/PVS is previously made, in exemplary embodiments, by
conducting the manifold mesh traversal process described in
conjunction with FIG. 20A1, or by the non-output sensitive
method of FIG. 12, and, in some embodiments, using the post
processing methods of FIG. 33A-FIG. 33D, and related fig-
ures. If, in decision step 3746, it is determined that the edge is
a significant, from-viewcell silhouette edge for the viewcell
transition then processing proceeds to the previously
described step 3748.

If, in decision step 3746, it is determined that edge EN is
not a significant from-viewcell silhouette edge for the view-
cell transition being considered, then processing proceeds to
step 3753.

In decision step 3753, it is determined if EN is an edge of
a significant terminal frontier boundary for the connected
component as determined in steps 3744 and 3746. If, in deci-
sion step 3753, it is determined that the edge EN is an edge of
the terminal frontier boundary of the traversal then processing
proceeds to step 3755.

In step 3755 the traversal does not proceed across terminal
frontier boundary edge (EN) of the VM/PVS. Following step
3755, processing proceeds to step 3745, in which the traversal
continues in a direction that does not cross the terminal fron-
tier boundary edge EN.

If, in decision step 3753, it is determined that the edge EN
is not an edge of a terminal frontier boundary then processing
proceeds directly to step 3745. In this case, in step 3745, the
traversal continues which can include traversal across the
edge EN.

FIG. 37C, Method of Constructing Connected Compo-
nents of VM/PVS Corresponding to a Viewcell Transition
Using Traversal Employing Precomputed Significant Fron-
tier Boundaries Stored as Run-length Encoded Edge Num-
bers (ENS).

In the runtime process, shown in FIG. 37C, these stored EN
numbers (precomputed and stored in the process described in
conjunction with FIG. 37B) representing the limits of the
mesh traversal conservatively defining the boundaries of the
connected components of the VM/PVS or delta-VM/delta-
pvs are employed to control a runtime traversal in order to
construct these connected components during runtime using
only the stored seed triangles and EN values, the latter being
represented using an efficient run-length encoding. Whereas
the runtime method of FIG. 37A employs a hinted manifold
mesh traversal to pre-labeled occlusion boundary or silhou-
ette contour edges; the present method of FIG. 8 employs a
hinted breadth-first traversal which is faster. While the current
method of FIG. 8 can generate a child VM/PVS from a parent
VM at a lower CPU cost than the method using hinted mani-
fold mesh traversal, it can also results in a less precise, though
still conservative, VM/PVS.

Turning now to FIG. 37C, in a first step 3760 the runtime
mesh traversal of the starting VM/PVS is initiated using a
pre-stored seed triangle of the connected component of the
VM/PVS. In subsequent step 3762, triangle edges are
encountered during the mesh traversal (e.g. breadth-first or
depth-first traversal), with the current edge of the traversal
being designated EN, the current number of edges thus far
encountered in the specific traversal starting from the seed
triangle.

In a subsequent step 3764, the EN of the current edge in the
traversal is compared to the run-length stored edge EN num-
bers representing significant conservative terminal bound-
aries for the connected component corresponding to the start-

10

15

20

25

30

35

40

45

50

55

60

65

222

ing triangle. (Both the starting triangle and the ENs
corresponding to terminal frontier boundaries have been
determined and stored in the process described in conjunction
with FIG. 37B). The process of FIG. 37B and FIG. 37C
employ the exact same traversal algorithm (e.g. either
breadth-first or depth-first). Since the ENs are stored in the
order in which they were identified by the process of FIG.
37B, they are encountered in the same process of FIG. 37D.
This allows for efficient identification of the next edge in a
frontier boundary using run-length encoding.

In a subsequent decision step, 3766, it is determined if the
current edge of the run-time traversal (EN) corresponds to a
terminal frontier boundary for the connected component of
the VM/PVS based on a comparison to stored ENs for these
boundaries as determined and stored in the process of FIG.
37B. If in step 3768, it is determined that the edge EN corre-
sponds to a stored EN for a terminal frontier boundary of the
traversal then processing proceeds to step 3770.

In step 3770 the mesh traversal is stopped at edge EN,
which corresponds to a terminal frontier boundary edge and
the traversal proceeds to step 3765. In step 3765 the mesh
traversal proceeds to the next edge that does not involve
crossing the terminal frontier boundary edge EN.

If, in decision step 3766, it is determined that the current
edge of the run-time traversal (EN) does not correspond to a
terminal frontier boundary for the connected component of
the VM/PVS, then processing proceeds directly to step 3765.
In this case, in step 3765, mesh traversal proceeds which can
include traversal across the edge EN. In this case, in step
3765, mesh traversal continues which can include traversal
across the edge EN.

As with the explicit method of encoding occlusion bound-
aries (e.g. FIG. 33A-FIG. 33D), the encoding methods are, in
some embodiments, employed only when the number of con-
nected triangles in the mesh bounded by the occlusion bound-
aries or silhouette contours is large. Otherwise a simple list-
ing of triangle id numbers can be used as in prior-art method
of PVS representation.

FIG. 37D1 through FIG. 37F2 illustrate exemplary mesh
traversal processes which can be used to encode the bound-
aries of a PVS or delta-PVS as edge encounter numbers (EN),
and later generate the PVS or delta-PVS by controlled tra-
versal using run-length encoded ENs to halt the traversal.

FIG. 37D1 shows a starting triangle (i.e., seed triangle) T0
and 12 (T1-T12) other triangles traversed in-order using a
depth-first traversal in which a specific edge of each triangle
is traversed to the next triangle. In this regard, when triangle
T01is chosen as a seed triangle using a depth-first traversal, the
triangles are traversed in order from T1-T12.

FIG. 37D2 shows a starting triangle T0 and 12 (T1-T12)
other triangles traversed in-order using a breadth-first tra-
versal in which all of the edges of the first triangle are tra-
versed before proceeding to the next triangle. In this regard,
when triangle T0 is chosen as a seed triangle using a breadth-
first traversal, the triangles are traversed in order from
T1-T12.

Both traversals cause a “flood-fill” type of result around the
seed triangle.

FIG. 37E1 shows a starting triangle T0 and 12 (T1-T12)
other triangles traversed in-order using a depth-first traversal
in which a specific edge of each triangle is traversed to the
next triangle.

FIG. 37E2 shows a starting triangle T0 and 12 other tri-
angles traversed in-order using a breadth-first traversal in
which all of the edges of the first triangle are traversed before
proceeding to the next triangle.

US 9,171,396 B2

223

FIG. 37F1 shows a starting triangle T0 and 12 (T1-T12)
other triangles traversed in-order using a depth-first traversal
in which a specific edge of each triangle is traversed to the
next triangle. The order of the edge encounters (el,e2,e3,e4,
e5,e6,e7,e8,e9,e10,e11,e2,e13) are shown. These correspond
to the ENs discussed above.

FIG. 37F2 shows a starting triangle T0 and 12 other tri-
angles traversed in-order using a breadth-first traversal in
which all of the edges of the first triangle are traversed before
proceeding to the next triangle. The order of the edge encoun-
ters (el,e2,e3,e4,e5,e6,c7,8.e9,e10,e11,e2,e13) are shown.
These correspond to the ENs discussed above.

FIG. 38A Method of Attaching a DeltaG+ Submesh Cor-
responding to Newly Exposed Mesh Elements for a Specific
Viewcell Transition to the Corresponding Labeled Silhouette
Contour’s Starting Boundary.

For any viewcell transition the polyline corresponding to
the attachment curve of a newly exposed submesh can be
determined and stored during the offline process of construct-
ing the from-viewcell visibility maps and the corresponding
delta-regions of visibility (FIG. 33). These polylines can be
stored using the DeltaGplussumbesh_attach_polyline data
structure of FIG. 31B. This data can be stored and used later
during the runtime process of incremental visibility map/PVS
construction described in FIG. 36 and FIG. 37A. Specifically,
in order to use the runtime method of determining newly
occluded mesh elements by “shunting” during runtime 3D
mesh traversal, any newly exposed mesh elements are con-
nected to previously exposed elements at the attachment
polyline in order to insure that a connected manifold is
present for the runtime traversal.

Note that in some embodiments, the method of FIG. 38A is
used when the method of FIG. 36 and FIG. 37A are used to
compute newly occluded geometry at runtime by shunting.

Insome embodiments, process flow proceeds to step, 3805,
where the DeltaGplussumbesh_attach_polyline data struc-
ture associated with the labeled silhouette edge (starting) for
the specific viewcell transition is accessed and referenced by
the variable AP.

Process flow proceeds to decision step 3810, where it is
determined if the attachment type corresponds to 0. If, in
decision step 3810, it is determined that the attachment type
corresponds to 0, then process flow proceeds to step 3815.

In step 3815, the edges of the deltaG+ submesh (here
simply called submesh) are directly connected to the corre-
sponding edges of the main mesh. This connection is made
between AP.edgenumber of edges starting at the single edges
listed in AP.submesh_edgelist and AP.mainmesh_edgelist
and proceeding along the free edges (edges having only one
component polygon) of the corresponding meshes. In this
mode only a single edge for each edgelist needs to be pre-
stored.

Process flow proceeds to decision step 3820, to determine
if the attachment type corresponds to 1. If; in decision step
3820, it is determined that the attachment type corresponds to
1, then process flow proceeds to step 3825.

In step 3825, the edges of the deltaG+ submesh (here
simply called submesh) are directly connected to the corre-
sponding edges of the main mesh. This connection is made
between AP.edgenumber of edges starting at the first edges
listed in AP.submesh_edgelist and AP.mainmesh_edgelist
and proceeding through the entire list of edges in sequence.

Process flow proceeds to decision step 3830 to determine if
the attachment type corresponds to 2. If, in decision step
3830, it is determined that the attachment type corresponds to
2, then process flow proceeds to step 3835.

10

15

20

25

30

35

40

45

50

55

60

65

224

In step 3835, the edges of the deltaG+ submesh (here
simply called submesh) are “linked” to the corresponding
edges of the main mesh wherein a linkage may be a one-to-
many mapping from one polyline segment to another
polyline. These links are identified during preprocessing such
that they present a conservative representation of the corre-
sponding mesh during runtime 3D traversal. This linkage is
made between AP.edgenumber of edges starting at the single
edges listed in APsubmesh edgelist and AP.main-
mesh_edgelist and proceeding along the free edges (edges
having only one component polygon) of the corresponding
meshes. In this mode only a single edge for each edgelist
needs to be prestored.

Process flow proceeds to decision step 3840 to determine if
the attachment type corresponds to 3. If, in decision step
3830, it is determined that the attachment type corresponds to
3, then process flow proceeds to step 3845.

In step 3845, the edges of the deltaG+ submesh (here
simply called submesh) are “linked” to the corresponding
edges of the main mesh, wherein a linkage may be a one-to-
many mapping from one polyline segment to another
polyline. These links are identified during preprocessing such
that they present a conservative representation of the corre-
sponding mesh during runtime 3D traversal. This linkage is
made between AP.edgenumber of edges starting at the first
edges listed in APsubmesh edgelist and AP.main-
mesh_edgelist and proceeding through the entire list of edges
in sequence.

In any case, process flow proceeds to step 3850 for the next
viewcell transition. In step 3850, the starting boundary for the
next viewcell transition may be derived from the ending
boundary of the current viewcell transition, and processing
proceeds to decision step 3810 for the next viewcell transi-
tion. Process flow terminates at step 3850.

In addition to using deltaG+ geometry packets for newly

exposed polygons, some newly exposed surfaces are recon-
structed, in some embodiments, procedurally at runtime with-
out the need for explicit deltaG+ polygons. This method, in
some embodiments, is employed to generate newly visible
portions of a single large polygon (or tessellated surface), a
floor or ceiling for example in newly exposed delta regions. In
this case, the silhouette contour is specially labeled with a
label that instructs the runtime process to procedurally gen-
erate the newly exposed portion of the surface in the entire
delta region.
Method of Precomputing the from-Region Visibility of Pro-
cedurally Generated Objects, Storing Procedural Visibility
Information, and Generating Newly Potentially Visible Por-
tions of Procedurally Generated Objects at Runtime Using
the Stored Procedural Visibility Information

FIGS. 30A through FIG. 37C and related figures specify
methods of precomputing the from-viewcell visibility of
mesh objects and storing the difference in the potentially
visible sets for contiguous viewcells as visibility event data.
At runtime this visibility event data is sent from a server unit
to a client unit using navigation-driven predictive prefetch
based on the client-user’s movements in the modeled envi-
ronment.

In conventional polygon mesh models, the information
representing each vertex and triangle of the polygon mesh
must be explicitly stored. In contrast, parametric models (also
called procedural models, one example of which is a tessel-
lated surface), allow efficient storage and transmission of
detailed polygon meshes by storing a relatively small amount
of information representing a procedural construction pro-
cess and corresponding procedural construction parameters
which can be used to generate the model polygons at runtime.

US 9,171,396 B2

225

Exemplary procedural models include extrusions, surfaces
of revolution, bevels, 1-systems (for generating vegetation),
particle systems (for generating hair and fur) and many other
methods of generating polygon meshes from construction
procedures controlled by a relatively small amount of para-
metric information.

Existing products such as Parametric Technologies’ Pro-
Engineer and Autodesk’s 3D Studio Max employ parametric
representation of procedural models, which are converted to
polygon meshes prior to rendering using a surface generation
procedure. In addition, many computer game engines can
store modeled surfaces using a type of procedural surface
called parametric surface (e.g. Non-uniform rational B-spline
surfaces). In these game engines the parametric surfaces are
represented by storing a small amount of information corre-
sponding to coefficients of the parametric equation and these
equations and coefficients are used to construct the corre-
sponding piecewise polygonal meshes prior to rendering in a
process called tessellation. Real-time tessellation of these
parametric surfaces into polygons meshes (which is required
for hardware rendering) is currently supported by graphics
hardware conforming to Microsoft’s DirectX 11 rendering
APL

Some embodiments use two parameters (called “P and Q”,
or “s and t”) to construct the surface. These two parameters
correspond to the two parametric dimensions of the con-
structed surface. For example, these surface parameters are
analogous to latitude and longitude on a globe. By defining a
minimum and maximum latitude and longitude, a sub-region
of the globe’s surface is specified with four numbers.

Embodiments of the present method perform the following
steps:

1. Generate the actual polygon mesh using the surface
construction procedure (e.g. extrusion, bevel, surface-
of-revolution) over a complete range of parametric val-
ues that defines the entire surface, e.g. P and Q values.

2. Determine the from-viewcell visibility (or delta-visibil-
ity) of the triangles of the mesh using the methods of
first-order, from-region visibility.

3. For a connected set of polygons in the visibility set
determined in step 2, identify the minimum and maxi-
mum P and Q values which conservatively include all of
the polygons in this set and store these four values.

4. At runtime the sever pre-sends (or the client will pre-
fetch if it is running the navigation-prediction process)
not the newly visible polygons themselves but the
parameters (P and Q) for generating these polygons.

This approach can dramatically decrease the bandwidth
required to deliver a visibility event data stream since a sur-
face generation procedure using the stored parameter values
requires only a few bytes and is capable of generating poly-
gons that would otherwise require many megabytes to store/
transmit.

FIG. 38B1 through FIG. 38K3 specify exemplary embodi-
ments of a method in which the portions of a procedural
model that become newly visible for a viewcell transition
(e.g. become potentially visible to a user on moving from
viewcell 1 to viewcell 2) are determined and the procedural
parameters describing the construction of the newly exposed
portions are identified and stored. At runtime, this stored
procedural visibility information is used to actually construct
the potentially newly exposed portions of the model.

This general method substantially reduces the bandwidth
requirement for visibility event information streaming, since
the construction parameters require much less storage and
transmission resources than the corresponding polygons.

20

30

40

45

50

226

FIG. 38B1 is a an exemplary perspective view, hidden line
diagram showing two viewcells, labeled VIEWCELL 1 and
VIEWCELL 2, a mesh conventional polygon mesh object,
labeled MESH 1, a circular profile P1, and a path Q1 over
which the profile P1 is swept to generate a procedural object.

In some embodiments, a circular profile is a polyline
approximation to a circle or other curve. According to some
embodiments, the curved profile P1 is swept along the
polyline path Q1 to generate a procedural polygon mesh
object (labeled MESHPQ in FIG. 38C1). For example, using
the popular 3D modeling program 3DStudioMax product
from Autodesk Corporation, the path Q1 may be chosen and
modified using the “Sweep” construction parameter and the
profile P1 is then selected as a custom profile using the
“Sweep” menu. The procedural mesh generation process of
3DStudioMax then generates the polygon mesh based on the
sweep path Q1 and Profile P1, together with possibly other
specified and stored parameters (e.g. such as the parameter P
and Q increments which determine the level-of-detail of the
resulting polygon mesh).

These and other procedural surface generation methods
(e.g. including B-spline surfaces, Bezier surfaces, extruded
surfaces, ruled surfaces, translationally swept surfaces, sur-
faces of revolution, and other surfaces) are described in
“Applied Geometry for Computer Graphics and CAD” Sec-
ond Edition, Marsh, Duncan, Springer 2004 ISBN-13:978-
1852338015, incorporated herein by reference.

FIG. 38B2 shows the same objects as FIG. 38B1 but from
a different perspective from “behind” the viewcells.

FIG. 38B3 shows the same objects as FIG. 38B1 and FIG.
38B2 but from a different perspective looking back toward
the viewcells.

FIG. 38B1 show a parameter Q increasing along PATH Q1
as indicated by the parametric dashed line labeled Q. In this
example, the entire procedural mesh object (the curved tube
labeled MESH PQ in FIG. 38C1) is generated by sweeping
the profile P1 through PATH Q under control of the parameter
Q. In this example, Q is a distance parameter along a para-
metric curve (e.g. a spline path). The parameter Q is used to
generate a piecewise-linear (e.g. polyline) approximation to
the parametric curve PATH Q1 using an exemplary basis
function such as a cubic curve equation, according to well
established prior-art methods:

X Q)=a O3 +byOP+cyO+d O
WQ)=ay QP +byP+cyQ+dyQ

2(Q)=aQ*+b 07 +c,0+d 0

Likewise the profile P1 can be represented by the paramet-
ric equation of a space curve as:

Equation 20

X(Py=axP3+b P +cxP+d P
W(Py=ayP3+b P> +ciP+d P

2(P)=a P3+bP>+c P+d P Equation 21

In this example, all of the polygons of the procedural mesh
model can be generated by selecting values of Q between 0.0
and 1.0, as well as values of P between 0.0 and 1.0, (not every
parametric path is shown in each figure to preserve clarity).
This provides a piecewise linear approximation to the implicit
curves and the corresponding implicit surface that is the pro-
cedural polygon mesh, shown as MESH PQ in FIG. 38C1.

The coefficients a, through d, are determined using, for
example, using the B-Spline basis functions as described in
“Computer Graphics”, Foley, J and van Damn, Second Edi-

US 9,171,396 B2

227
tion Addison Wesley ¢1990 ISBN 0-201-12110-7 pg. 471-
530, incorporated herein by reference.

In this example, generating the entire procedural surface
(MESH PQ) by using construction parameter Q values
between 0.0 and 1.0 (and parameter P values also between 0.0
and 1.0) generates the complete object without regard to what
part of the model is visible, e.g. from a specific viewcell. FIG.
38C1-FIG. 38C3 shows the entire procedural mesh object
including the portions hidden by MESH 1. Accordingly, in
some embodiments, a client device retrieves values of param-
eters P and Q (e.g., over a data communication network) and
uses Equations 20 and 21 to generate portions a graphical
object without having to retrieve the entire graphical object,
which significantly reduces bandwidth requirements of the
client device.

The parametric curve equations for generating X, y, and z
values of polygon vertices are employed in more general
procedures such as extrusion of a profile along a path. For
example the C language function prototype:

Function Prototype |

int Extrusion(curve*Profile, curve*Path,

float Pmin,

float Pmax,

float Pincrement,

float Qmin,

float Qmax,

float, Qincrement,

float™® x,

float™* y,

float™ z,

struct Triangle* triangle_array)
defines a procedure by which an array of x, y, and z values for
polygon vertices can be generated from a description of the
Profile curves (e.g. a data structure containing the parameters
of'equation 21) and the Path (e.g. a data structure containing
the parameters of equation 20). Procedures such as function
prototype I, generally convert the x, y, z vertices to an array of
triangle as indicated by the triangle_array of Triangle data
structures.

FIG. 38C1 is an exemplary perspective view similar to
FIG. 38B1 but showing the entire MESH PQ generated from
the procedure of sweeping the PROFILE P1 (in FIG. 38B1)
along path Q1 (in FIG. 38B1) using parameters P and Q,
respectively.

FIG. 38C2 is an exemplary perspective view of the same
objects of FIG. 38C1, but from a different view, generally
looking from the viewcells toward the path and profile. As
illustrated in FIG. 38C2, a portion of MESH PQ is occluded
from the viewcells by MESH 1.

FIG. 38C3 is an exemplary perspective view, hidden line
diagram of the same objects as FIG. 38C1, but from a difter-
ent view, generally looking from the profile and path back to
the viewcells.

FIG. 38D1 is an exemplary perspective hidden-line dia-
gram showing only the portion of MESH PQ that is visible
from VIEWCELL 1. This portion of the mesh MESH PQ is
labeled MESH PQ_VIS_VCI1. In exemplary embodiments,
the portion of the mesh visible from VIEWCELL 1 is deter-
mined using first-order visibility event surfaces as, for
example described in FIG. 1-12, and as shown in FIG. 38E1-
FIG. 38F2 as is described in conjunction with those figures.

FIG. 38D1 shows that the portion of MESH PQ conserva-
tively visible from VIEWCELL 1 (MESH PQ_VIS_VC1)

10

15

20

25

30

35

45

50

55

60

65

228

can be constructed by using profile parameter P values
between 0.0 and 0.75, and by using path parameter Q values
between 0.0 and 0.42.

FIG. 38D2 is an exemplary perspective hidden-line dia-
gram showing only the portion of MESH PQ that is visible
from VIEWCELL 2. This portion of the mesh MESH PQ is
labeled MESH PQ_VIS_VC2. In exemplary embodiments
the portion of the mesh visible from VIEWCELL 2 is deter-
mined using first-order visibility event surfaces as, for
example described in FIG. 1-12, and as shown in FIG. 38E1-
FIG. 38F2 as is described in conjunction with those figures.

FIG. 38D2 shows that the portion of MESH PQ conserva-
tively visible from VIEWCELL 2 (MESH PQ_VIS_VC(C2)
and not visible from VIEWCELL 1 can be constructed by
using profile parameter P values between 0.0 and 0.75, and by
using path parameter Q values between 0.0 and 0.42.

In exemplary embodiments, the set of polygons that are
termed to be conservatively visible from a viewcell includes
all polygons or fragments of polygons that are visible from a
viewcell, and may include some polygons or fragments that
are not visible from a viewcell. For example, in exemplary
embodiments the methods of first-order from-region visibil-
ity determination described in exemplary FIG. 1, and exem-
plary FIG. 3-FIG. 10, can be used to determine polygons or
fragments of polygons conservatively visible from a viewcell.
In other exemplary embodiments, the more precise linearized
approximation to higher-order visibility event surfaces as
described in FIG. 2, FIG. 11, FIG. 27 and related figures can
be employed to determine a more precise set of polygons or
polygon fragments that is also conservatively visible from a
viewcell.

Note that the portion of MESH PQ between Q values 0.42
and 0.67 is the portion that becomes potentially visible during
a viewcell transition from VIEWCELL 1 to VIEWCELL 2.
The determination of this newly visible portion of MESH PQ
during the viewcell transition from VIEWCELL 1 to VIEW-
CELL 2 is made using first-order visibility event surfaces
incident on MESH 1 (as shown in FIG. 38E1 to FIG. 38G2).

FIG. 38E1 is an exemplary hidden line perspective view
diagram of VIEWCELL 1 and the portion of MESH PQ
visible from VIEWCELL 1. FIG. 38E1 shows 4 first-order
silhouette edges of MESH1: FOSE 1-1, FOSE 1-2, FOSE 1-3,
and FOSE 1-4 and the corresponding supporting viewcell
vertices SV1, SV2, SV3, and SV4. In exemplary embodi-
ments, the determination of the first-order silhouette edges
employs the method of FIG. 3 and the determination of the
corresponding supporting viewcell vertices employs the
method of exemplary flow diagrams FIG. 4B and FIG. 4C.

The pivoted supporting polygon between FOSE 1-1 and
SV1 (PSP 1) is defined by vertices SV1, V1, and V2. The
pivoted supporting polygon between SV2 and FOSE 1-2
(PSP 2) is defined by vertices SV2, V2, and V3. The pivoted
supporting polygon between FOSE 1-3 and SV3 (PSP 3) is
defined by vertices SV3, V3, and V4. The pivoted supporting
polygon between FOSE 1-4 and SV4 (PSP 4) is defined by
vertices SV4, V4, and V1. In exemplary embodiments, these
pivoted supporting polygons are constructed using the
method of the exemplary flow diagram FIG. 4A.

The first-order visibility event wedges corresponding to
these four pivoted supporting polygons are shown in FIG.
38F1, and FIG. 38F2. In exemplary embodiments, the visibil-
ity event surfaces (also called first-order wedges) are con-
structed using the method of exemplary flow diagram FIG. 1.

FIG. 38E1 also shows the portion of MESH PQ that is
visible from VIEWCELL 1. According to some embodi-
ments, the determination of this visible portion is made using
the first-order visibility event wedges shown in FIG. 38F1.

US 9,171,396 B2

229

These wedges form a continuous linearized umbral event
surface (CLUES) that divides MESH PQ into a portion that is
potentially visible from VIEWCELL 1 (MESH
PQ_VIS_VC1) and a portion that is not (the rest of MESH
PQ).

FIG. 38E2 is an exemplary wireframe perspective view
diagram of VIEWCELL 1, MESH 1 and the same pivoted
supporting polygons shown in FIG. 38E, but from a different
perspective generally looking toward the viewcell, which is
mostly obscured by MESH 1. Supporting viewcell vertex
SV4, and pivoted supporting polygon PSP4 are unoccluded
by MESH 1 and are labeled in FIG. 38E2 from the perspective
of the figure. The first-order wedges corresponding to the
pivoted supporting polygons of FIG. 38E2 are shown in the
same view in FIG. 38F2. The portion of MESH PQ visible
from VIEWCELL 1 is shown as MESH PQ_VIS_VC1, with
the corresponding range of Q parameter values required to
generate this portion of MESH PQ.

FIG. 38F1 is an exemplary perspective view hidden line
diagram showing the same VIEWCELL 1, MESH 1, and
MESH PQ_VIS_VC1 as illustrated in FIG. 38E1, and from a
similar perspective. In FIG. 38F1 the pivoted visibility event
wedges corresponding to the pivoted supporting polygons
shown in FIG. 38E1 are shown. FOW 1-1 is the first-order
wedge incident on FOSE 1-1. FOW 1-2 is the first-order
wedge incident on FOSE 1-2. FOW 1-3 (which is seen virtu-
ally edge-on in this view) is the first order wedge incident on
FOSE 1-3. FOW 14 is the first-order edge incident on FOSE
1-4. In embodiments, the pivoted visibility event wedges are
determined according to the processes illustrated in FIGS. 4A
and 6A.

The four exemplary first-order wedges form a conservative
linearized umbral event surface which divides the MESH PQ
into a portion that is conservatively, potentially visible from
VIEWCELL 1 (MESH PQ_VIS_VC1) and a portion that is
occluded from VIEWCELL 1. MESH PQ intersects the con-
servative linearized umbral event surface. The intersection is
a from-viewcell occlusion boundary. Part of this occlusion
boundary is visible in FIG. 38F1 and is labeled OB1.

FIG. 38F2 is an exemplary perspective view hidden line
diagram showing the same VIEWCELL 1, MESH 1, and
MESH PQ_VIS_VC1 as illustrated in FIG. 38E2, and from a
similar perspective. In FIG. 38F2, the pivoted visibility event
wedges corresponding to the pivoted supporting polygons
shown in FIG. 38E2 are shown. FIG. 38F2 also shows some
of the same objects as illustrated in FI1G. 38F1, but from a
different perspective generally looking back toward VIEW-
CELL 1. The four exemplary first-order wedges form a con-
servative linearized umbral event surface which divides the
MESH PQ into a portion that is conservatively, potentially
visible from VIEWCELL 1 (MESH PQ_VIS_VC1) and a
portion that is occluded from VIEWCELL 1. MESH PQ
intersects the conservative linearized umbral event surface.
The intersection is a from-viewcell occlusion boundary. A
different part of this occlusion boundary, also shown in FIG.
38F1 is visible in FIG. 38F2 and is also labeled OB1. From
this exemplary perspective view, it appears that MESH
PQ_VIS_VC1 should contain only the four “axial” piecewise
linear sections of MESH PQ labeled S1, S2, S3, and S4, since
only four sections seem to be on the “unoccluded” side of the
CLUES formed by the first-order wedges incident on MESH
1. FIG. 38G3 shows the same objects of FIG. 38F2, but from
a different perspective looking “up” toward the viewcell and
viewing the unoccluded side of first-order wedge FOW 1-3.
FIG. 38G3 clearly shows that a portion of the “fifth” section
of MESH PQ, labeled S5 is on the unoccluded side of the
FOW 1-3, and on the unoccluded side of the corresponding

10

15

20

25

30

35

40

45

50

55

60

230

segments of occlusion boundary labeled OB1, which is the
continuation of the same occlusion boundary OB1 shown in
FIG. 38F1 and FIG. 38F2. These figures show that the portion
of MESH PQ conservatively visible from VIEWCELL 1 are
the axial sections that would be constructed using the proce-
dural axial construction parameter Q between value 0.0 and
value 0.42.

FIG. 38G1 is an exemplary perspective view hidden line
diagram showing the same MESH 1, and MESH PQ as illus-
trated in FIG. 38F1, and from a similar perspective, but show-
ing a different viewcell, VIEWCELL 2. In FIG. 38G1, the
pivoted visibility event wedges corresponding to the pivoted
supporting polygons are shown. FOW 2-1 is the first-order
wedge incident on FOSE 2-1. FOW 2-2 is the first-order
wedge incident on FOSE 2-2. FOW 2-3 (which is seen virtu-
ally edge-on in this view) is the first order wedge incident on
FOSE 2-3. FOW 24 is the first-order edge incident on FOSE
2-4. Note that FOSE 2-3 is a different edge of MESH 1, than
FOSE-1-3 (for VIEWCELL 1, in FIG. 38F1), and FOSE 2-4
is a different edge of MESH 1 than FOSE 1-4 (for VIEW-
CELL 1, in FIG. 38F1).

The four exemplary first-order wedges form a conservative
linearized umbral event surface which divides the MESH PQ
into a portion that is conservatively, potentially visible from
VIEWCELL 2 (MESH PQ_VIS_VC2) and a portion that is
occluded from VIEWCELL 2. MESH PQ intersects the con-
servative linearized umbral event surface. The intersection is
a from-viewcell occlusion boundary. Part of this occlusion
boundary is visible in FIG. 38G1 and is labeled OB2. As
illustrated in FIG. 38G1, the portion of the MESH PQ with Q
ranging from 0 to 0.67 is on the unoccluded side of the
visibility event surface.

FIG. 38G2 is an exemplary perspective view hidden line
diagram showing the same VIEWCELL 1, MESH 1, and
MESH PQ_VIS_VC1 as illustrated in FIG. 38F2, and from a
similar perspective. In FIG. 38G2 the pivoted visibility event
wedges are shown. FIG. 38G2 also shows some of the same
objects as illustrated in FIG. 38G1, but from a different per-
spective generally looking back toward VIEWCELL 2.

The four exemplary first-order wedges form a conservative
linearized umbral event surface which divides the MESH PQ
into a portion that is conservatively, potentially visible from
VIEWCELL 2 (MESH PQ_VIS_V(C2). MESH PQ intersects
the conservative linearized umbral event surface. The inter-
section is a from-viewcell occlusion boundary. A different
part of this occlusion boundary, also shown in FIG. 38G1 is
visible in FIG. 38G2 and is also labeled OB2.

These figures show that the portion of MESH PQ conser-
vatively visible from VIEWCELL 2 are the axial sections that
would be constructed using the procedural axial construction
parameter Q between value 0.42 and value 0.67.

FIG. 38G3 is an exemplary perspective hidden line dia-
gram showing the same objects of FIG. 38F2, but from a
different perspective looking “up” toward the viewcell and
viewing the unoccluded side of first-order wedge FOW 1-3.
FIG. 38G3 clearly shows that a portion of the “fifth” section
of MESH PQ, labeled S5, is on the unoccluded side of the
FOW 1-3, and on the unoccluded side of the corresponding
segments of occlusion boundary labeled OB1.

FIG. 38H is an exemplary block diagram/flow diagram
showing the general method of determining the components
of'a procedurally generated polygon mesh object that become
visible during a viewcell transition from viewcell VC[1] to
viewcell VC[2], identifying and storing the procedural
parameter values corresponding to the newly exposed com-
ponents, and using these stored parameter values to generate

US 9,171,396 B2

231

the newly exposed components of the polygon mesh at runt-
ime ifthe user’s viewpoint is predicted to move from VC[1] to
VCI2].

In exemplary embodiments, process flow starts at step
3851. In step 3851, the occlusion boundaries and silhouette
contours for the components of a procedurally generated
mesh that become visible on moving from VC[1] to VC[2] are
identified. In exemplary embodiments, these occlusion
boundaries and silhouette contours are determined using the
first-order, from-region visibility determination methods
described in the exemplary figures FIG. 1-FIG. 38G3. In
other embodiments, higher-order refinements as described in
FIG. 2 and FIG. 11 are employed.

Process flow proceeds to step 3853 the parameter values
corresponding to the newly exposed components of the mesh
are identified. In some embodiments, the newly exposed por-
tions of a polygon meshform irregular sub-regions of a poly-
gon mesh, for example the region contained inside the bound-
ary labeled EB 1-2 shown in FIG. 38K1-FIG. 38K3. In one
method of conservatively simplifying the information
describing such an irregular exposure region, the P and Q
parameters which bound the irregular exposure region and
define a rectangular sub-portion of the P-Q parameter space
on the mesh are identified. (For details see FIG. 38K1-FIG.
38K3).

Process flow proceeds to step 3855 the P and Q procedural
construction parameters that conservatively contain the cor-
responding newly exposed region of the procedurally gener-
ated mesh identified in step 3853 are stored in data store 3857.
For example, referring to F1G. 38G1, when a transition from
viewcell 1 to viewcell 2 is made, the portion of MESH PQ that
becomes newly visible corresponds to Q ranging from 0.42 to
0.67 with P ranging from O to 0.75. Therefore, instead of
storing the actual polygons themselves, these parameters are
stored and associated with the transition from viewcell 1 and
viewcell 2. Steps 3851 through 3857, in some embodiments
are conducted by a encoder unit which runs the method as a
pre-process. In additional embodiments, the encoder unit is
incorporated within the server.

A copy of the data of data store 3857 is made available to a
visibility event server unit as data store 3858. In step 3859,
conducted on the server unit, data representing the P,Q values
conservatively representing the newly exposed region(s) of
procedural polygon meshes for the exemplary VC[1] to
VC]|2] transition are sent to a visibility event client unit. In
some embodiments, this data is sent to the client unit upon
prediction that the client-user’s viewpoint will move from
viewcell VC[1] to viewcell VC[2]. In some embodiments, this
prediction is determined using a navigation-prediction pro-
cess executed on the server unit. In other embodiments, this
prediction is determined by a navigation-prediction process
executed on the client unit. In exemplary embodiments this
navigation-prediction process can employ the prior-art meth-
ods of navigation-prediction, such as dead reckoning. In other
exemplary embodiments the navigation-prediction method
can employ the method of determining the probability of
navigation to specific viewcells as a function of the viewcell’s
location relative to preferred navigational paths in the mod-
eled environment, as specified in exemplary flowchart FIG.
38 of the co-pending application PCT/US2011/51403. In
some embodiments, the P,Q values for more than one view-
cell transition are sent from the server unit to the client unit.

In some embodiments, the data sent from the visibility
event server unit to the visibility event client unit is stored in
data store 3861 on the client unit. In decision step 3863, it is
determined if the probability that the client-user viewpoint
will move from VC[1] to VC[2] exceeds a predetermined

20

25

30

40

45

55

232
threshold THRESHOLDI1. If; in decision step 3863 it is deter-
mined that the probability that the client-user viewpoint will
move from VC[1] to VC[2] exceeds THRESHOLD1 then
process flow proceeds to step 3864.

In step 3864, the polygons corresponding to the P,Q limit-
ing values which represent a portion of the polygon mesh
object that becomes newly visible during the exemplary view-
cell transition VC[1] to VCJ[2] are generated using the mesh
generation procedure and the stored values of P and Q as
parameters for the mesh generation procedure.

An example of the mesh generation procedure is illustrated
in FIG. 38D1 and F1G. 38D2, in which the “sweep” procedure
(e.g. as employed, for example by Autodesk Corporations
3DStudio or Parametric Technologies ProEngineer products
using prior-art methods of extrusion along a curved path) is
used to sweep profile P1 along path Q1 (show in FIG.
B1-FIG. B3), between the parameters P=0.0 to P=0.75, and
Q=0.42 to Q-0.67, as shown in FIG. 38D1 and FIG. 38D2)

If, in decision step 3863 it is determined that the probability
that the client-user viewpoint moves from VC[1] to VC[2]
does not exceed THRESHOLDI1 then process flow proceeds
to step 3866.

In step 3866, the polygons of the procedurally generated
polygon mesh that would become newly exposed for the
viewcell transition VC[1] to VC[2] are not generated.

FIG. 381 is an exemplary flow diagram showing additional
details of the method of determining the components of a
procedurally generated polygon mesh object that become
visible during a viewcell transition from viewcell VC[1] to
viewcell VC[2] and identifying and storing the procedural
parameter values corresponding to the newly exposed com-
ponents.

In exemplary embodiments, the process of flow diagram
FIG. 381 is conducted after all of the polygons corresponding
to a procedural object have been generated (at a desired level
of detail using increments of parameter P and Q) and the
from-viewcell occlusion boundaries and first-order silhouette
contours of the polygon meshes have been identified for two
contiguous viewcells. In embodiments, the determination of
these occlusion boundaries and silhouette contours employ
the strictly first-order methods of FIG. 1, FIG. 3 through FIG.
10, FIG. 12-FIG. 26, and FIG. 37. In alternate embodiments,
the determination of these elements of a from-region visibil-
ity difference map also employ higher-order refinements, for
example as shown in FIG. 2, FIG. 27, and related figures. In
either case, the occlusion boundaries and silhouette contours
may be generated using the naive method of FIG. 12, or the
output-sensitive depth-ordered mesh traversal method of
FIG. 20A1 or FIG. 20A2 and related figures.

Thus, prior to the process shown in FIG. 381, the entire set
of'triangles for the procedurally generated parametric surface
are generated in a pre-process prior to identifying occluded
and non-occluded regions of these procedurally generated
polygon meshes. These occlusion regions and silhouette con-
tours define regions corresponding to a from-viewcell visibil-
ity map, and a significant visibility difference map for specific
viewcell transitions (e.g. VC[1] to VC[2]) and prior to com-
paring these from-viewcell visibility maps to identify the
difference sets of triangles corresponding to the delta-VM/
PVS for a viewcell transition (e.g. as described in FIG. 39,
FIG. 40 and related figures). In exemplary embodiments, the
silhouette contours and occlusion boundaries used to deter-
mine the visibility difference maps include first-order silhou-
ette edges and first-order wedges as described in conjunction
with exemplary figures FIG. 1, FIG. 3, FIG. 7-F1G. 10. Addi-
tionally, in some embodiments, the wedges used are more

US 9,171,396 B2

233

refined approximations to higher-order visibility event sur-
faces as described in exemplary FIG. 2, FIG. 11, and FIG. 27.

Inembodiments, process flow begins at step 3868 in which,
for each connected component (also called a visibility tran-
sition region) of a from-viewcell significant visibility differ-
ence map (wherein the component is bounded by significant
occlusion/exposure boundaries and/or silhouette contours) a
mesh traversal is conducted starting at a seed triangle for the
visibility transition region. In this example, the seed triangle
is atriangle visible from VC[2] but not visible from VC[1]. In
exemplary embodiments, mesh traversal employs a depth-
first mesh traversal (e.g. FIGS. 37D1, 37E1, and 37F1) or a
breadth-first mesh traversal (e.g. FIG. 37D2, 37E2, 37F2) or
other traversal.

Process flow proceeds to step 3869, in which the triangle
edges encountered in the traversal are identified.

Process flow proceeds to decision step 3870 to determine if
encountered edge EN is on the occluded side of a significantly
occluding occlusion boundary (OB) for VC[2] or on the non-
occluded side of a significant occluding boundary for VC[1].

Since the desired delta-VIM/PVS for this exemplary VC[1]
to VCJ2] transition is a set of triangles that become newly
visible when the viewcell is changed from viewcell VC[1] to
viewcell VC[2], if the encountered edge is occluded from
VC[2] or not occluded from VCJ[1], the triangle completely
on the same side of the boundary is not in the desired delta-
VM/PVS. This occurs if the triangle edge is completely on the
occluded side of a significant occlusion boundary (OB) gen-
erated by viewcell VC[2] or completely on the non-occluded
side of a significant occlusion boundary generated by view-
cell VC[1].

If, in decision step 3870, it is determined that the encoun-
tered edge is occluded from VC[2] or not occluded from
VC[1] then process flow proceeds to step 3871. In step 3871,
the parametric P and Q values conservatively bounding the
encountered EN are stored.

FIG. 38K1 is an exemplary diagram ofa polygon mesh and
the region enclosed by dashed line EB 1-2 is a significant
visibility transition region of exposure corresponding to the
viewcell transition VC[1] to VC[2]. The region of the polygon
mesh enclosed by EB 1-2 becomes visible on moving from
VCJ[1] to VC[2]. The location of EB 1-2 indicates that tri-
angles T0 through T9 become visible during aVC[1] to VC[2]
transition. Other triangles shown do not become visible for
this viewcell transition. The triangle edge shared by triangle
T2 and triangle T13 is completely outside the boundary EB
1-2. Consequently, the triangle T13 is completely outside of
the transition region and this edge meets the criteria of deci-
sion step 3870 and the maximum parameters corresponding
to this triangle (in this case P=2.35 and Q=0.75) are stored in
step 3871. In some embodiments only the parametric con-
struction values, e.g. P and Q are stored. Additional details of
FIG. 38K1-FIG. 38K3 are given in conjunction with the
description of those figures. The triangle T0 is labeled in bold
because it corresponds to the seed triangle for the edge-
encounter method of encoding visibility transition regions as
described in conjunction with exemplary diagrams FIG.
38D1-FIG. 38F2. In exemplary embodiments, this method
can be used to identify visibility regions and/or visibility
transition regions for procedurally generated polygon
meshes, which are then conservatively represented by the
procedural parameter limits (e.g. MAXIMUM P and MAXI-
MUM Q) in steps 3874 and 3875 of FIG. 38I.

If, in decision step 3870 it is determined that the encoun-
tered edge is not on the occluded side of an occlusion bound-
ary corresponding to VC[2], then process flow proceeds to
decision step 3872.

10

15

20

25

30

35

40

45

50

55

60

65

234

In decision step 3872, if it is determined the encountered
edge is a first-order silhouette edge bounding the transition
region VC[1]-VCJ2], then process flow proceeds to step 3871
and the P,Q parameters and or edge number associated with
this encountered edge EN are stored as described in the
description of step 3871.

If, in decision step 3872 it is determined that the encoun-
tered edge is not a first-order silhouette edge bounding the
transition region then process flow proceeds to decision step
step 3873.

After steps 3871 or 3872, process flow proceeds to decision
step 3873, where it is determined if the traversal of the tran-
sition region is complete. In exemplary embodiments, this
determination is made using methods specific to the type of
mesh traversal being employed.

If, in decision step 3873, it is determined that the traversal
of the region is not complete, then process flow proceeds to
step 3874, where the next triangle/edge in the traversal is
selected.

If, in decision step 3873, it is determined that the traversal
of the region is complete, then process flow proceeds to step
3874.

In step 3874 the entire set of ENs bounding the region and
their corresponding P and Q values are examined to identify
a singular rectangular region of P-Q parameter space that
contains the transition region. In the example of FIG. 38K1,
the transition region bounded by EB 1-2 can be conserva-
tively represented by storing a minimum parameter Q value of
0.65, a maximum parameter Q value of 0.75, a minimum
parameter P value of 2.30 and a maximum parameter P value
012.33. These values define a rectangular region of parameter
space that conservatively contains the region bounded by EB
1-2.

In optional step 3875, these values are compressed using
any desired compression technique such as run-length encod-
ing.

If, in decision step 3873, the traversal of all triangle/edges
of the visibility transition region is not complete then pro-
cessing proceeds to step 3876, next triangle/edge in the tra-
versal.

Referring to FIG. 38K1 again, the figure shows an example
of a transition region which in this example corresponds to a
portion of a polygon mesh that becomes exposed during a
viewcell transition VC[1] to VC|[2]. In FIG. 38K1, the poly-
gons of the mesh corresponding to this visibility transition
region are identified by a flood-fill traversal of the mesh to the
first-order occlusion boundaries or first-order silhouette con-
tours that define the region as described in FIG. 37B through
FIG. 37F2. FIG. 38K2 shows only those polygons of the mesh
that are conservatively part of the visibility transition region
as determined by a depth-first traversal starting at seed tri-
angle T0 and ending at triangle T9.

FIG. 38K3 shows that the irregular visibility transition
region can be conservatively represented using the minimum
and maximum values of parameters P and Q that form a
rectangular perimeter around the actual EB 1-2 boundary of
the visibility transition region. This rectangular region of PQ
parameter space conservatively includes triangles T0 through
T9 and, in this case, also includes triangles T13 and T17
which are not actually part of the visibility transition region
set of polygons.

In exemplary embodiments, only four values are employed
(e.g. Pmin, Pmax, Qmin, and Qmax) to define a rectangular
region of parameter space that conservatively represents the
portion of a procedural mesh that becomes newly visible for
a specific viewcell transition. In further embodiments, addi-
tional procedural parameters (e.g., more than four values) are

US 9,171,396 B2

235

determined and stored which define a more precise visibility
event region that is bounded by more than four sides. In some
embodiments, these more precise parametric boundaries are
stored using any desired compression technique including
run-length encoding.

The use of such parametric value minimax ranges to
encode visibility transition regions can result in somewhat
less precision than encoding using actual occlusion boundary
polylines or even edge encounter numbers. However, using
parametric range values allows the newly visible portions of
the mesh corresponding the visibility transition region to
actually be generated at runtime by a visibility event client
unit using a much smaller amount of information (parametric
range values) sent by the visibility event server, which would
otherwise have to deliver deltaG+ submesh data including the
description of each of the triangles in the corresponding vis-
ibility transition region.

FIG. 38] is an exemplary flow diagram showing a method,
conducted on a visibility event client unit at runtime, of con-
structing the polygons corresponding to a viewcell transition
region using stored procedural construction parameter values
which, when employed to drive a procedural mesh construc-
tion process, produce a superset of the polygons of the view-
cell transition region (those polygons that become potentially
visible during the movement of a client user’s viewpoint from
one viewcell to another, e.g. VC[1] to VC[2]). Exemplary
flowchart FIG. 38] provides additional details given in the
client component of the exemplary block diagram flow dia-
gram of FIG. 38H.

Process flow begins at decision step 3877 where the prob-
ability that the client user’s viewpoint moves from VC[1] to
VC[2] and compares this probability to a predetermined value
THRESHOLD_T.

If, in decision step 3877, it is determined that the probabil-
ity that the client-viewpoint moves from VC[1] to VC[2] does
not exceed the predetermined value THRESHOLD_T, then
process flow proceeds to step 3879, where the mesh polygons
corresponding to the newly exposed mesh polygons for the
specific viewcell transition are not generated.

If, in decision step 3877, it is determined that the probabil-
ity that the client-viewpoint will move from VC[1] to VC[2]
exceeds the predetermined value THRESHOLD_T, then pro-
cess flow proceeds to step 3880.

In step 3880 the data representing the minimum and maxi-
mum P and Q parametric values for the region of the proce-
dural polygon mesh that becomes newly visible for the spe-
cific viewcell transition VC[1] to VC|2] is prefetched from
data store 3882.

In some embodiments, data store 3882 resides on a visibil-
ity event client. In alternate embodiments, process 3877 is
also conducted as a navigation prediction process imple-
mented on the visibility event server unit.

Process flow proceeds to decision step 3883 where the
probability that the client user’s viewpoint moves from VC[1]
to V([2] is determined and compared to a second predeter-
mined threshold value, THRESHOLDI1.

If, in decision step 3883 it is determined that the probability
that the client user’s viewpoint will move from VC[1] to
VC(C[2] is less than THRESHOLD1 than the process termi-
nates.

If, on the other hand, it is determined in decision step 3883
that the probability that the client user’s viewpoint will move
from VC[1] to VC|2] is greater than the predetermined value
THRESHOLD1, then process flow proceeds to step 3884. In
some embodiments separate thresholds are used to trigger
prefetch of the requisite data (THRESHOLD_T) and actual
generation of the newly visible components of the procedural

10

15

20

25

30

35

40

45

50

55

60

65

236

polygon mesh (THRESHOLD1). In some embodiments,
THRESHOLD1 is lower than THRESHOLD_T, insuring that
the parametric information required to generate the newly
visible portion of a procedural object is prefetched or pre-sent
before the client unit requires this data to actually generate the
procedural object, as triggered by THRESHOLD1

In step 3884, the polygons belonging to the potentially
newly exposed portion or region of the procedurally gener-
ated mesh object that become potentially visible during the
exemplary VC[1] to VC|2] viewcell transition (movement of
aclient user’s viewpoint from VC[1] to VC|2]) are procedur-
ally generated between the parameter values PMIN and
PMAX and QMIN and QMAX.

For example, if the Pmin, Pmax, Qmin, and Qmax values
of, respectively 2.3, 2.33, 0.65, 0.75 corresponding to the
polygon mesh shown in FIG. 38K1 are identified and stored
by the process of exemplary flow diagram FIG. 381 for the
viewcell transition VC[1] to VC|[2], then the process of exem-
plary flow diagram FIG. 38] generates the subset of the tri-
angle mesh polygons shown in FIG. 38K3. These polygons
are a conservative superset of the polygons that will become
visible if the client user’s viewpoint moves from VC[1] to
VC[2]. In exemplary embodiments, the procedure used to
generate these polygons may be an extrusion (e.g. as shown in
Function Prototype 1), a general tessellation, a surfaces of
revolution, a bevel, an 1-system, partical system or any other
procedural surface generation process.

For example, several exemplary procedural mesh genera-
tion methods are incorporated into a variety of modeling
programs such as Autodesk’s Maya and 3DStudio products
and as plug-in applications for use with these and other mod-
eling and game development products. One example of an
L-system procedural modeling implementation (The Math-
ematical Theory of L-Systems, Lindenmayer, Academic
Press >nY. 1980, ISBN 0-12-597140-0), is IDV, incorporat-
ed’s SpeedTree product, which is used to enable the proce-
dural generation of trees and other vegetation for games and
other applications displaying modeled 3D environments.

FIG. 38K1 is an exemplary diagram of a polygon mesh and
the region enclosed by dashed line EB 1-2 is a significant
visibility transition region of exposure corresponding to the
viewcell transition VC[1] to VC|2].

FIG. 38K1 shows a triangle mesh. A subset of this triangle
mesh includes triangles labeled from T0 through T9. In this
example triangles T0 through T9 are the triangles of the mesh
that become visible for a specific viewcell transition VC[1] to
VC[2]. The actual boundary of the region of newly visible
mesh elements is shown as the polyline labeled EB 1-2. In
embodiments, this polyline is determined by first-order sil-
houette edges as well as the intersection of first-order conser-
vative, linearized, umbral event surfaces (CLUES) visibility
event surfaces (or alternatively, “adjusted” or higher-order
linear event surfaces) as specified, in exemplary embodi-
ments, in FIG. 1 through FIG. 20.

If the triangle mesh of FIG. 38K1 is not a procedurally
generated mesh, then the boundaries of the visibility transi-
tion region corresponding a subset of the mesh that becomes
potentially visible during the VC[1] to V(| 2] viewcell may be
stored as explicit polyline contours (e.g. using the exemplary
methods of FIG. 25-FIG. 30). In alternative embodiments, the
region is represented and stored as a seed triangle and run-
length encoded “encounter numbers” which specify the halt-
ing of a flood-fill traversal of the mesh at a conservative
boundary of the newly visible triangles (FIG. 37B through
FIG. 37F2).

If the triangle mesh of FIG. 38K1 is a procedurally gener-
ated mesh, then the portion of the mesh that becomes poten-

US 9,171,396 B2

237

tially visible during a specific viewcell transition (e.g. VC[1]
to VC|2]) can be specified by identifying and storing a range
of procedural construction values that define the region (as
described in the exemplary flow diagrams FIG. 38H, encoder
component, and FIG. 381). At runtime, this stored parametric
information is used to actually generate the newly visible
polygons, as described in exemplary flow diagrams FIG. 38H
client component, and FIG. 38J.

In FIG. 38K1, The location of EB 1-2 indicates that tri-
angles T0 through T9 become visible during aVC[1] to VC[2]
transition. Other triangles shown do not become visible for
this viewcell transition. The triangle edge shared by triangle
T2 and triangle T13 is completely outside the boundary EB
1-2. Consequently, the triangle T13 is completely outside of
the transition region and this edge meets the criteria of deci-
sion step 3870 of FIG. 38] and the maximum parameters
corresponding to this triangle (in this case P=2.35 and
Q=0.75) are stored in step 3871 of FIG. 381.

At runtime, these stored construction parameter values are
used to generate the triangles T0-T9 and T13 and T17 accord-
ing to the method of exemplary flow diagram 38J. As previ-
ously described, FIG. 38K3 shows that the set of triangles that
are generated during the process of FIG. 38] are a conserva-
tive superset of the triangles that actually become visible,
since some of the triangles (e.g. T13 and T17) are completely
outside the EB 1-2 polyline that represents a more precise
boundary of the visibility transition region. The reduction in
precision that results from using procedural parametric value
ranges achieves a significant reduction in transmission costs
required to convey visibility event packets from a visibility
event server to a visibility event client.

FIG. 42A and FIG. 42B Flowcharts Showing the Method
Using Hierarchical Viewcells.

The method of incrementally constructing a from-viewcell
visibility map from a previous from-viewcell visibility map
(FIGS. 34-38) allows the determination of newly occluded
triangles by effectively bypassing or shunting the newly
occluded regions of the visibility map during the simplified.
This method allows the removal of newly occluded geometry
without specifically storing or transmitting information for
the newly occluded triangles. Instead, the labeled silhouette
contour information for dynamically occluding silhouette
contours (DOSCs) is used to construct a new visibility map
occlusion boundary that bypasses the occluded geometry.

The labeled silhouette contours encoded using the data
structures of FIG. 31A and FIG. 31B tend to have very low
storage requirements for delta regions of high dynamic vis-
ibility coherence, primarily because the same contour can be
reused over many viewcell transitions. Consequently, the
incremental visibility map maintenance method can have
substantially lower storage/transmission costs than conven-
tional deltaPV'S schemes in which information for each newly
occluded triangle must be stored/transmitted for each view-
cell transition.

This is particularly true when the method is employed
using a hierarchical organization of viewcells in which some
viewcells are adjacent to other viewcells and other viewcells
are completely contained in other viewcells (that is they are
child viewcells of a parent viewcell).

Using this arrangement of viewcells, the visibility map for
alarge viewcell is constructed from the visibility map from an
adjacent large viewcell; and the visibility map of a child
viewcell is constructed from the visibility map of the parent
viewcell. In the latter case, the visibility map of a child view-
cell can be constructed with no deltaGplus information,
because upon moving from a parent viewcell to a contained
child viewcell no geometry will become newly visible. The

10

15

20

25

30

35

40

45

50

55

60

65

238

incremental construction of a visibility map corresponding to
a child viewcell from the parent viewcell’s visibility map
requires only the determination of newly occluded geometry
which can be accomplished using the runtime incremental
visibility map construction (FIGS. 34-38) using only the
labeled DOSC data which causes the newly occluded tri-
angles to be “shunted”.

The use of larger adjacent viewcells can also improve the
efficiency of data access and transmission from the server
supplying the deltaGplus and deltaGminus information to the
rendering client. This is because disk access/seek times can
tend to dominate the overall read time for small datapackets,
making the transmission of larger data packets more efficient.
Thus, storing and transmitting deltaGplus information only
for large, adjacent viewcells; and computing the visibility
maps of child viewcells at runtime can substantially reduce
transmission bandwidth required between the rendering cli-
ent and the visibility database server.

In some embodiments, process flow starts at step 4210 to
determine if the viewcell transition for which the deltaVM/
deltaPVS information is to be encoded (using the method of
FIG. 33) is between a parent viewcell and a (contained) child
viewcell.

If, in decision step 4210, it is determined that the viewcell
transition corresponds to a transition from a parent viewcell to
a child viewcell, then process flow proceeds to step 4230.

In step 4230 the deltaVM/deltaPVS information corre-
sponding to the viewcell transition (determined using the
method of FIG. 33 and related figures) corresponds to DOSC
labeled silhouette contour information.

If, in decision step 4210, it is determined that the viewcell
transition corresponds to a transition that is not from a parent
viewcell to a child viewcell, then process flow proceeds to
step 4220.

In step 4220 the deltaVM/deltaPVS information corre-
sponding to the viewcell transition (determined using the
method of FIG. 33 and related figures) corresponds to DOSC,
DESC, and deltaG+ submesh information. Process flow ter-
minates at step 4220 and 4230.

Embodiments employ larger, parent viewcells to compute
the visibility of more distant geometry and smaller, child
viewcells to compute the visibility of closer geometry. This
method is efficient because changes in visibility (e.g. the rate
at which newly exposed and newly occluded surfaces
develop) with viewpoint motion are, in general smaller, with
increasing distance from the viewpoint.

Turning now to FIG. 42B, process flow starts at step 4240
to determine if the size of the viewcell is small relative to the
distance of the specific geometry for which the dynamic
visibility (deltaVM/deltaPV'S data for a viewcell transition) is
being determined.

If, in decision step 4240, it is determined that the viewcell
is small relative to the distance of the geometry, then process
flow proceeds to step 4260.

In step 4260, the specific geometry at the predetermined
greater distance from the viewcell is not included in the
deltaVM/deltaPVS computation for a viewcell transition
involving the current viewcell. This geometry may be
included in the deltaVM/deltaP VS calculation for a viewcell
transition involving a parent viewcell of the current viewcell.

If, in decision step 4240, it is determined that the viewcell
is not small relative to the distance of the geometry, then
process flow proceeds to step 4250.

In step 4250, the specific geometry at the predetermined
greater distance from the viewcell is included in the deltaVM/

US 9,171,396 B2

239

deltaPVS computation for a viewcell transition involving the
current viewcell. Process flow terminates at steps 4250 and
4260.

FIG. 43A and FIG. 43B Data Structures for Incremental
VM/PVS Maintenance Using Delta VM/PVS Data.

FIG. 43A and FIG. 43B show data structures for the
method of incremental visibility map/PVS maintenance con-
ducted by a client and server process. The data structures here
can be applied whether the client and server processes reside
on distinct physical devices connected by a network. Alter-
natively these data structures can be employed in implemen-
tations in which two processes are conducted on the same
compute device.

The DDL is a destination display list (and may also be
called a dynamic display list). The list may be comprised of
one or more lists or arrays of data structures representing
polygon mesh objects. These include triangles (DDIL_Tri),
edges (DDL_Edge), vertices (DDL,_Vertex) and potentially
other associated data such as material and texture specifica-
tions. Other data structures for implementing the DDL
method may be found in table X111 of U.S. Pat. No. 6,111,582.
by this inventor.

In the method of U.S. Pat. No. 6,111,582, the DDL data
structures are used to implement a from-viewpoint, per-im-
age DDL scheme in which the dynamic display list for a
single image is maintained. In contrast, for the present inven-
tion the DDL method is employed to maintain a set of DDLs
that correspond to conservative PVSs for viewcells substan-
tially in the vicinity of the user’s current viewpoint (or in an
expanding region connected to this vicinity). Nevertheless
some of the data structures including those for materials,
textures, procedural textures and others can be employed in
both methods.

The set of DDLs are made available to a client process. The
DDLs corresponds to a set of PVSs for viewcells in the
vicinity of the viewpoint, as determined by a navigation pre-
diction algorithm. The DDLs are referenced in the struct PVS
data structure of FIG. 43B.

The Global_to_DD_Linkmap_Edge, Global_to_D-
DL_Linkmap_Tri, Global_to_DDIL._Linkmap_Vertex data
structures shown in FIG. 43A are used by the method of FIG.
44 A, FIG. 44B, FIG. 44C and related figures, and discussed in
detail in conjunction with those figures.

Method of Easily Selecting Advertising Objects Delivered
while Viewing Content Delivered as a Non-Interactive or
Fully Interactive Visibility Event Data Stream.

The co-pending patent application PCT/US11/51403
describes methods of delivering entertainment content as a
visibility event data stream and also delivering targeted,
selectable advertising objects (and purchasable cash-store
objects) as a separate visibility event data stream that is seam-
lessly integrated into the entertainment content visibility
event data stream. The present method includes techniques
which make the selection or “clicking” of an advertising
object very easy for a user viewing the integrated entertain-
ment content and advertising content visibility event data
streams.

A disadvantage of clickable ads is that the user must
actively target the advertising object, e.g. using a mouse,
game controller or other pointing device, in order to select the
advertisement. This requirement for active targeting can cre-
ate a barrier to use that makes clickable advertisements less
effective. For example, even if a user is interested in the
product advertised by a clickable ad, the act of targeting and
clicking the ad may distract the user’s attention from the
primary entertainment content to a degree that the ad is often
not clicked.

40

45

240

The method of delivering targeted, selectable advertising
objects and cash-store objects as visibility event data streams
that are tightly integrated into a primary interactive or non-
interactive visibility event data stream is first reviewed in
FIG. 44-FIG. 46. The method of making the advertising
objects and cash-store objects easily selectable is then pre-
sented in FIG. 47-48.

FIG. 44A is an exemplary block diagram/flowchart illus-
trating a visibility event content server and also illustrating
the same separate visibility event advertising or cash store
server.

Data store 4458 stores visibility event data representing
objects in the modeled environment. In some embodiments,
this visibility event data corresponds to non-variable visibil-
ity event packets which are delivered to client units using
navigation-based prefetch.

Inthe exemplary embodiment of FIG. 44 A, visibility event
content data stored in data store 4458 is sent to visibility event
client[2] and is simultaneously sent to visibility event client
[3]. In the exemplary embodiment of FIG. 44 A, the visibility
event data stream being simultaneously broadcast to visibility
event client [2] and visibility event client [3] is a visibility
event data stream driven by a prescripted camera motion path
in a computer generated modeled environment and delivered
by visibility event decoder-server process labeled 4460.

In the exemplary embodiment of FIG. 44A, the visibility
event client[1] is receiving a unique visibility event content
stream from the server process labeled 4461.

The visibility event stream now being received by visibility
event client[1] is a fully interactive visibility event data
stream in which the navigation-based prefetch is driven by
controller input provided by the client-user of visibility event
client[1], which is sent to the visibility event decoder-process
U[1] labeled 4461.

The visibility event cash store/advertising server labeled
4450 delivers a unique variable visibility event stream includ-
ing advertising (or cash store, or messaging information) to
each of the client units.

In FIG. 44A, the unique visibility event advertising data
stream delivered to visibility event client[1] is sent by visibil-
ity event decoder-server process U[1] labeled 4478. For any
given client unit, the visibility data stream from the visibility
event content server and the visibility event data stream from
the visibility event advertising server are both being
prefetched using the same camera/viewpoint motions. In
FIG. 44A, the camera/viewpoint for visibility event client[1]
is driven by interactive client-user input controlling camera/
viewpoint motion. Consequently, in FIG. 44A the visibility
event advertising server process delivering unique content to
visibility event client[1] (the process decoder-server process
U[1)), receives the controller input information generated by
the client-user for visibility event client[1]. In some embodi-
ments, this information is received by the advertising server-
decoder process (e.g. 4478 of F1G. 44A) from the correspond-
ing content sever-decoder process (e.g. 4461 of FIG. 44A) as
shown by the unidirectional dashed connector between these
two processes. In other embodiments, the navigational input
information is sent directly from the client unit to the visibil-
ity event advertising server, e.g. using the bidirectional com-
munication link between decoder-client process 4475 and
decoder-server process 4478.

FIG. 44B is a block diagram/flow diagram showing the
visibility event content server illustrated in FIG. 44A, and
including steps of charging a client-user a fee for interactive
content or purchasing cash store items.

FIG. 44B illustrates the same visibility event content server
and separate visibility event cash store/advertising server as

US 9,171,396 B2

241

FIG. 44A. FIG. 44B also includes two of the visibility event
client units illustrated in FIG. 44A, but does not include
Visibility Event Client [2] for clarity.

FIG. 44B shows the method of charging the user of Vis-
ibility Event Client [1] (labeled 4471) an additional or incre-
mental fee for receiving the unique, interactive visibility
event content stream from the visibility event decoder-server
process U[1] running, in the exemplary embodiment, on vis-
ibility event content server labeled 4445. The step of charging
the user for this additional interactivity is labeled 4482. This
charge is a monetary charge or other assessment applied to the
specific client-user requesting a unique visibility event data
stream for which the prefetch is driven by client-user supplied
navigational input. As previously described in the co-pending
application PCT/US11/51403, in some embodiments, the
unique visibility event packet stream enables a much less
restricted navigation of the modeled environment than is pos-
sible when receiving a broadcast visibility event packet
stream for which prefetch is driven by a prescripted camera/
viewpoint motion path. The incremental charge incurred for
receiving the unique visibility event stream, in some embodi-
ments, reflects the value of the additional navigational free-
dom enabled by the unique stream.

FIG. 44B also illustrates the method of charging a client-
user an additional fee for delivering a cash store object that
can later be used (e.g., an object worn, carried, or operated in
the modeled environment) during a broadcast visibility event
stream such as SIM content A driven by a prescripted camera/
viewpoint, as delivered, in the exemplary embodiment of
FIG. 44B, by decoder-server process A, and as received by
decoder-client process 4477; or during the delivery of a
unique visibility event content stream, driven by client-user
controlled camera/viewpoint motion control as delivered, in
the exemplary embodiment of FIG. 44B, by decoder-server
process U[1], labeled 4461, and as received by decoder-client
process 4475. The step of charging an additional fee for the
delivery of a cash store object is labeled 4482 and can be
implemented in the case of a passive SIM or a fully interactive
unique visibility event datastream.

FIG. 45 is an exemplary flow diagram illustrating a method
of streaming visibility event packets including geometry
information, texture information, or instructions to generate
geometry or texture information, wherein the visibility event
information represents advertising and targeted advertising
during low bandwidth requirement periods of a streaming
interactive media data stream.

A server unit is labeled 4505. A specific client unit is
labeled 4510. In some embodiments, the server unit is con-
nected to multiple client units.

In some embodiments, the non-variable visibility event
data includes the majority of the content of the modeled
environment including buildings, vehicles, avatars, and other
content that do not represent advertising, cash store, or mes-
saging objects that are unique to a particular client-user. In
contrast, the variable visibility event data (stored in data store
4525 of this exemplary embodiment represents advertising,
cash store, messaging or other objects that are unique to a
particular client-user.

In embodiments, both non-variable and variable visibility
event data is prefetched to client units based on camera/
viewpoint movements which may either be determined by a
prescripted camera motion path or may be driven by interac-
tive user control of camera/viewpoint motion. Cash store
objects include objects or representations of objects in the
modeled environment that can be selected by a client-user,
and wherein the selection of the cash store object makes the
object available for use by the client-user. In some embodi-

10

15

20

25

30

35

40

45

50

55

60

65

242

ments, the selection of the cash store object results in a mon-
etary charge to the client-user. Examples of cash store items
include modeled apparel, weapons, accessories, vehicles, real
estate, and any other types of objects that can be represented
in a modeled environment.

Messaging objects include objects or representation of
objects in the modeled environment that convey a message to
the client-user. Examples of messaging objects include bill-
boards, engravings or markings on avatars, vehicles, or
apparel, flying logos or any other types of objects that can be
represented in the modeled environment. In some embodi-
ments, the messaging object are interacted with by the client-
user to send a return message. Advertising objects also
include objects or representation of objects in the modeled
environment that convey an advertisement to the client-user.
Examples of advertising objects include billboards, engrav-
ings or markings on avatars, vehicles, or apparel, flying logos
or any other types of objects that can be represented in the
modeled environment. In some embodiments, the messaging
object can be interacted with by the client-user and the inter-
action is recorded as a user click of a clickable advertisement.

In the exemplary embodiment of FIG. 45, the visibility
event packets are streamed based on a scripted, predeter-
mined camera path, in which case the same non-variable
visibility event data stream is broadcast to a plurality of con-
nected client units. Data store 4515 stores non-variable delta-
PVS or visibility event packets. In this exemplary embodi-
ment, the non-variable visibility event packets include
geometry and texture information that is prefetched based on
a prescripted camera path. The resulting visibility event data
stream is called a streaming interactive media (SIM) data
stream.

In exemplary embodiments, a SIM data stream is deliv-
ered, in nominal operating mode, as a visibility event data
stream that is driven by a prescripted camera motion path. In
further embodiments, this non-variable visibility event data
stream is driven by a predetermined scripted camera motion
path in which case the resulting SIM allows limited interac-
tivity. In this case, the scripted sequence of non-variable
visibility event packets is broadcasted to multiple client units
simultaneously according to some embodiments.

In step 4520, the non-variable packets including the
streaming interactive programming are delivered to client
units as non-variable visibility event packets. In the exem-
plary embodiment of FIG. 45 embodiments, the non-variable
visibility event packets are streamed based on a scripted,
predetermined camera path, in which case the same non-
variable visibility event data stream is broadcast to a plurality
of connected client units. In alternative embodiments, non-
variable visibility event packets are dynamically prefetched
to a specific client unit using navigation-based prefetch in
which the camera/viewer motion is interactively controlled
by the client user using a mouse, game controller or other
device.

A second data store 4525 stores variable data representing
directed advertising messages that are streamed to individual,
specific client units during the broadcast or non-broadcast
delivery of the non-variable visibility event data in some
embodiments. For example, two different client units that
receive the same non-variable visibility event packets may
each receive different advertising data specific to each client.
In this regard, the user of a first client unit may be a teenager,
and the user of a second client unit may be an adult. Accord-
ingly, the variable advertising data may be customized
according to the user’s age group. According to some
embodiments, the directed advertising data is sent as variable

US 9,171,396 B2

243

packets that are added to the data stream during periods when
the bandwidth requirement for sending the non-variable data
is low.

In step 4530, the geometric or texture information for an
object representing a specific advertising message that will be
visible to the user is placed in one or more variable packets
that are combined with the broadcast, non-variable packets in
step 4533.

Alternate embodiments of the method insert variable
packet data, in the step 4530, wherein the variable packet data
represents renderable graphics objects or instructions for gen-
erating renderable graphics objects that comprise instant
messages sent from one user to another user.

In some embodiments, the visibility event data of 4525 is
actual geometric and/or texture information. In alternate
embodiments, the data is instructions for generating the
actual geometric and/or texture information on the client unit.
In one embodiment, the data of 4525 includes parameters for
the parametric construction of the objects representing the
geometric and/or texture information that is the object repre-
senting the advertising message. In one embodiment, this
parametric information includes references to specific glyphs
as well as parameters that describe the extrusion and/or bev-
eling of the glyph outlines to generate 3D logos or engravings
representing the advertising message. In further embodi-
ments, other parametric construction techniques are
employed to generate billboards, neon signage, scoreboard
and other representations with a custom advertising message.

In some embodiments, the data of store 4515 is, in step
4530, associated with a geometric transformation matrix that
places the associated object in a location that will likely
become visible to the user in a predetermined amount of time,
using on the navigation-based prefetch methods described in
the co-pending PCT patent application number PCT/
US2011/042459 and further improved in the present specifi-
cation. In one embodiment, the transformation matrix trans-
forms the variable object to a location that is not visible from
the current viewcell, but is visible from a viewcell that will
soon be penetrated by the camera/viewpoint. The transforma-
tion matrix is derived using the prior-art method of matrix
concatenation as described in the publication “Introduction to
Computer Graphics, Foley, J., Van Dam, Addison Wesley,
1990” incorporated herein by reference, wherein the trans-
formation matrix locates the variable object in a viewcell or
navigation cell that is not yet visible to the user but is part of
the visibility event cache.

In step 4530, the data representing the advertising object is
streamed as a variable packet during periods when the num-
ber and size of variable packets being sent is low. In this
exemplary embodiment, the variable packets are sent during
periods of time when the bandwidth requirement for stream-
ing non-variable packets is low. Even in exemplary imple-
mentations such as this implementation, in which the non-
variable packets represent prescripted visibility event packets
that are broadcast simultaneously to multiple clients, each
variable packet is sent only to a specific receiver/client unit
during these periods of low bandwidth requirement in some
embodiments. The variable packets are sent to one or more
specifically targeted receiver units using a packet addressing
protocol such as TCP/IP or any other desired routing scheme.

The method of adding variable non-broadcast packets to
the data stream during periods of low bandwidth requirement
for the non-variable, broadcast packets makes optimal use of
the available bandwidth and tends to minimize cases in which
the client’s cache of visibility event data is outrun by the
camera/viewpoint location, which would otherwise corre-
spond to late packet arrival and visibility errors during the

10

15

20

25

30

35

40

45

50

55

60

65

244

client rendering. In step 4530, the objects representing the
advertising messages are specifically located in a part of the
modeled environment such that the objects are likely to be
visible to the user in a predetermined amount of time. Also, in
step 4530 the scheduling of the variable packet transmission
is made so that the objects arrive substantially before they
become visible, thereby preventing visibility errors caused by
late packet arrival.

Exemplary embodiments can also include the method of
adaptively using lower level-of-detail visibility event packets
to prevent anticipated late packet arrival which is further
discussed in conjunction with the method of FIG. 42A and
FIG. 42B. As an example, if an object is expected to become
visible at time t1, a packet at the current level of detail is
scheduled to arrive at the client device at a time prior to time
t1 (e.g., time t0). However, if it is determined that the packet
at the current level of detail cannot arrive at time t0, then a
packet at a lower level of detail is sent to the client device at
time t0. In subsequent step 4533, the non-variable visibility
event packets are combined with the variable visibility event
packets into a combined data stream indicated as data 4550.
The data stream 4550 is the combined data stream of the
broadcast (non-variable) and variable packets that is sent to a
specific client unit, indicated by the rectangle 4510. In step
4555, conducted on a specific client unit, the user may choose
to interact with a specific object representing an advertising
message. The data representing the time and location (and
other information indicating, the object interacted with) is
sent from the specific receiver to the server unit. This data
transmitted back to the server unit is shown as data labeled
4557.

In step 4540, conducted on the server unit, the user click
data received from the client unit data stream indicated by
4557 is used to trigger the read of specific geometric or
texture (or parametric) data representing an object associated
with the clicked advertisement (AD). In this case, in some
embodiments, the represented object includes additional
information about the clicked advertisement including a rep-
resentation of the advertised product or additional product
literature or ordering information. In alternative embodi-
ments, the represented object is a click-to-order icon. In some
embodiments, a click-to-order icon is displayed on an object
in the modeled environment. Upon selection of a click-to-
order icon, an order form pops up permitting the user to order
a product corresponding to the selected object If the adver-
tised object is a virtual object that may be worn, driven, flown,
navigated, or carried by the user’s avatar during the remainder
of'the streaming interactive program then the click may result
in a charge to the user as shown in step 4556.

Method of Streaming Advertising and Targeted Advertising
During Low Bandwidth Requirement Periods of'a Fully Inter-
active Bidirectional Data Stream.

As previously described, FIG. 45 shows an exemplary
embodiment in of the method of inserting variable visibility
event data packets into a data stream of non-variable visibility
event packets wherein the non-variable visibility event pack-
ets represent the majority of modeled objects and the variable
visibility event data packets represent advertising, cash store,
or messaging objects. In the exemplary embodiment of FIG.
45, both the non-variable and variable visibility event data
packets are nominally prefetched based on camera/viewpoint
movement determined by a prescribed camera path, corre-
sponding to an animated programming with limited interac-
tivity.

In some embodiments, the method of FIG. 45 is applied
during the streaming of visibility event data is prefetched
based on camera/viewpoint movement that is under interac-

US 9,171,396 B2

245

tive control of a client-user. Such an exemplary embodiment
is illustrated in the exemplary flow diagram of FIG. 46. In the
data store 4615, the delta-PVS or visibility event data for the
entire environment is represented in some embodiments. In
step 4620, the non-variable visibility event packets are
prefetched based on the user’s viewpoint location which is
under interactive control of the user using the navigation-
based prefetch method described in the co-pending PCT
patent application number PCT/US2011/042309.

In step 4620, the non-variable packets that include the
streaming interactive programming are delivered to client
units as non-variable visibility event packets. In this case, the
non-variable visibility event packets are dynamically
prefetched to a specific client unit using navigation-based
prefetch in which the camera/viewer motion is interactively
controlled by the client user using a mouse, game controller
or other device. In this case, the non-variable visibility event
data packets are streamed as unique data stream to a specific
client/user (e.g., game-like content with significant interac-
tivity).

A second data store 4625 stores variable data representing
directed advertising messages (or cash store items, or mes-
saging objects) that are streamed to individual, specific client
units during the non-broadcast delivery of the non-variable
visibility event data according to some embodiments. The
directed advertising data is sent as variable packets that are
added to the data stream during periods when the bandwidth
requirement for sending the non-variable data is low. The
determination of current and predicted bandwidth require-
ments relative to the available bandwidth are made using
information including the size of visibility event packets to be
prefetched and the viewpoint velocity. Therefore, for
example, when the number of visibility event packets that are
scheduled for prefetched delivery in a given time are below a
predetermined threshold, it is predicted that a user’s band-
width requirement is low permitting the transmission of
advertising data to the user. In one exemplary embodiment, in
step 4630 the geometric or texture information for an object
representing a specific advertising message that will be vis-
ible to the user is placed in one or more variable packets that
are combined with the, non-variable packets in step 4633.

In some embodiments, the visibility event data of 4625 is
actual geometric and/or texture information. In alternative
embodiments, the data is instructions for generating the
actual geometric and/or texture information on the client unit.
In one embodiment, the data in the second data store 4625
includes parameters for the parametric construction of the
objects representing the geometric and/or texture information
that is the object representing the advertising message. In one
embodiment, this parametric information includes references
to specific glyphs as well as parameters that describe the
extrusion and/or beveling of the glyph outlines to generate 3D
logos or engravings representing the advertising message. In
further embodiments, other parametric construction tech-
niques are employed to generate billboards, neon signage,
scoreboard and other representations with a custom advertis-
ing message.

In some embodiments, the data of store 4630 is associated
with a geometric transformation matrix that places the asso-
ciated object in a location that will likely become visible to
the user in a predetermined amount of time, using on the
navigation-based prefetch methods specified in the co-pend-
ing PCT patent application number PCT/US2011/042309
and further described, in additional embodiments, in the
present specification.

In step 4630, the data representing the advertising object is
streamed as a variable packet during periods when the num-

20

25

30

35

40

45

55

65

246

ber and size of variable packets being sent is low. In this
exemplary embodiment, the variable packets are sent during
periods of time when the bandwidth requirement for stream-
ing non-variable packets is low. Even in implementations in
which the non-variable packets represent prescripted visibil-
ity event packets that are broadcast simultaneously to mul-
tiple clients (e.g., exemplary embodiment of FIG. 30), each
variable packet can potentially be sent to a specific receiver/
client unit during these low-bandwidth requirement periods.
The variable packets are sent to one or more specifically
targeted receiver units using a packet addressing protocol
such as TCP/IP or any other desired routing scheme in some
embodiments.

The method of adding variable non-broadcast packets to
the data stream during periods of low bandwidth requirement
for the non-variable, packets makes optimal use of the avail-
able bandwidth and tends to minimize cases in which the
client’s cache of visibility event data is outrun by the camera
location, which would otherwise correspond to late packet
arrival and visibility errors during the client rendering.

In step 4630, in some embodiments, the objects represent-
ing the advertising messages are specifically located in a
predetermined area of the modeled environment such that the
objects are likely to be visible to the user in a predetermined
amount of time. In this regard, ifit is predicted that a user will
arrive ata position X at timet, and an advertisement at position
y is visible from position X, packets including the advertise-
ment or instructions for displaying the advertisement are
provided with sufficient time to display the advertisement at
time t. Also, in step 4630, the scheduling of the variable
packet transmission is made so that the objects arrive substan-
tially before they will become visible, thereby preventing
visibility errors caused by late packet arrival.

In subsequent step 4633, the non-variable visibility event
packets are combined with the variable visibility event pack-
ets into a combined data stream indicated as data 4650. The
data stream 4650 is the combined data stream of the non-
variable and variable packets that is sent to a specific client
unit, indicated by the rectangle 4610. In step 4655, conducted
on a specific client unit, the user may choose to interact with
a specific object representing an advertising message. The
data representing the time and location (i.e. the. object inter-
acted with) is sent from the specific receiver to the server unit.
This data transmitted back to the server unit is shown as data
labeled 4657.

In step 4640, conducted on the server unit, the user click
data received from the client unit data stream indicated by
4657 is used, in some embodiments, to trigger the read of
specific geometric or texture (or parametric) data represent-
ing an object associated with the clicked advertisement (AD).
In this case, the represented object includes additional infor-
mation about the clicked advertisement including a represen-
tation of the advertised product or additional product litera-
ture or ordering information in some embodiments. In
alternative embodiments, the represented object is a click-to-
order icon. If the advertised object is a virtual object that may
be worn, driven, flown, navigated, or carried by the user’s
avatar during the remainder of the streaming interactive pro-
gram then the click may result in a charge to the user as shown
in step 4656.

FIG. 47A is a perspective hidden line diagram showing a
modeled environment and the viewcells corresponding to a
visibility event data cache state for a client-user located at
viewpoint VP1, and moving with the velocity vector VEC-
TOR1.

FIG. 47 A illustrates objects of modeled environment that
are potentially visible from a first current camera/viewpoint

US 9,171,396 B2

247

location labeled VP1. VP1 is a camera/viewpoint location on
a camera/viewpoint motion trajectory that is under interactive
control of a client-user. The dark arrow labeled VECTOR 1 is
the camera/viewpoint velocity vector corresponding to VP1.

The viewcells which contain viewcell-viewcell transitions
that correspond to visibility event packets currently cached by
the decoder-client process are shown in FIG. 47A for the
camera/viewpoint location labeled VP1. The prefetch of vis-
ibility event packets is determined by the current camera/
viewpoint position as well as velocity and, in some embodi-
ments, acceleration vectors using simple dead reckoning
methods of navigation prediction or, in some embodiments,
using the prior-art methods of navigation prediction and the
method of navigation prediction described in the co-pending
application PCT/US11/51403.

In the exemplary case illustrated in FIG. 47A, viewcells in
the second column of the viewcell matrix other than Viewcell
[1, 2, 1] and Viewcell [1, 2, 2] are not shown since the
navigation prediction used in this example has determined
that the probability that Viewcell [1, 2, 3] and beyond will be
penetrated in a specified time in the future is low. The visibil-
ity event packets corresponding to the undisplayed viewcells
have not been sent by the decoder-sever, and are consequently
not represented in the visibility event cache corresponding to
client viewpoint position VP1.

Given the set of potentially visible sets (PVSs) that can be
assembled from the visibility event packets (including delta-
PVS data and, in some embodiments, labeled silhouette con-
tour information) cached for the exemplary camera/view-
point location VP1, only graphical objects 4701 and 4702 are
potentially visible. That is, for the viewcells shown in FIG.
47A, only objects 4701 and 4702 are potentially visible.

FIG. 47B is an exemplary perspective hidden line diagram
corresponding to cached visibility event packets for a second
current camera/viewpoint location VP2.

FIG. 47B illustrates objects of the modeled environment
that are potentially visible from a second current camera/
viewpoint location labeled VP2. VP2 is a camera/viewpoint
location on a camera/viewpoint motion trajectory that is
under interactive control of a client-user. The dark arrow
labeled VECTOR 2 is the camera/viewpoint velocity vector
corresponding to VP2.

The viewcells which contain viewcell-viewcell transitions
that correspond to visibility event packets currently cached by
the decoder-client process are shown in FIG. 47B for the
camera/viewpoint location labeled VP2. The prefetch of vis-
ibility event packets is determined by the current camera/
viewpoint position as well as velocity and, in some embodi-
ments, acceleration vectors using simple dead reckoning
methods of navigation prediction or, in some embodiments,
using prior-art methods of navigation prediction, or in exem-
plary embodiments the method of navigation prediction
described in conjunction with FIG. 36 A and FIG. 36B of the
co-pending application PCT/US11/51403.

In the exemplary case illustrated in FIG. 47B, viewcells in
the second column of the viewcell matrix other than Viewcell
[1, 2, 4] and Viewcell [1, 2, 5] are not shown since the
navigation prediction used in this example has determined
that the probability that Viewcell [1, 2, 6] and beyond will be
penetrated in a specified time in the future is low. Moreover,
the visibility event packets associated with Viewcell [1, 2, 1]
and Viewcell [1, 2, 2], which were cached for the earlier
camera/viewpoint location VP1, are no longer present in the
cache for VP2. In this exemplary case, the previously cached
visibility event packets Viewcell [1, 2, 1] and Viewcell [1, 2,
2] have been replaced using a cache replacement method. In
some embodiments, a cache replacement method such as

10

15

20

25

30

35

40

45

50

55

60

65

248

LRU (least recently used) or another replacement method
which determines the currently cached visibility event pack-
ets having corresponding viewcell transitions that are least
likely to be penetrated in a specified time given the position
and velocity vectors of the current camera/viewpoint loca-
tion. The method, in some embodiments, employs prior-art
techniques of cache replacement, as described in the exem-
plary publication “Web Caching and its Applications, Naga-
raj, S. 2004 Kluwer Academic Publishers, ISBN 1-420-8050-
6”, incorporated herein by reference. The cached visibility
event packets corresponding to VP2 include information that,
in some embodiments, is used to construct the PVSs for one
or more of the viewcells shown in FIG. 47B. These PVSs
corresponding to the visibility event cache for VP2 include
objects 4703 and 4704. As shown by their absence in FIG.
47A, objects 4703 and 4704 are not included in the PVSs
corresponding to the visibility event cache for VP1.

Object 4703 is a motorcycle which, in some embodiments,
corresponds to a cash store object that can be purchased and
used by a client-user in the modeled environment. In some
embodiments, the exemplary motorcycle object 4003 is pur-
chased by clicking on the object using a cursor or crosshair, or
otherwise selecting the object. In some embodiments, the
purchased cash store object is then made available for use
during the game or SIM program (e.g. the motorcycle
becomes available to ride).

As the motorcycle object 4703 is not visible from the
viewcells corresponding to the visibility event cache of view-
point location VP1, but becomes visible from the viewcells
corresponding to the visibility event cache of a later view-
point location VP2, the graphical object 4703 is delivered to
the client-decoder process by a client-server process after the
time corresponding to VP1 and at or before a time corre-
sponding to VP2. The client-server process delivering this
cash store item is, in some embodiments, a decoder-server
process that is operating on a separate server device than the
corresponding decoder-server process that is delivering the
non-cash store items (e.g., 4701 and 4702), as shown in the
FIG. 44A separate decoder-sever processes
(4478,4479,4480) delivering unique cash store variable vis-
ibility event packets to the corresponding decoder-client pro-
cesses during delivery of visibility event content delivered
from a separate decoder-server processes 4460 and 4461.

Object 4704 is a billboard containing a variable message
which, in some embodiments, corresponds to an advertising
object that can be selected by a client-user. In some embodi-
ments, the exemplary billboard object 4704 is selected by
clicking on the object using a curser or crosshair, or otherwise
selecting the object. In some embodiments, selecting the
advertising objects also makes available a cash store object
purchased cash store for use during the game or non-interac-
tive streaming interactive media (SIM) program.

As the billboard object 4704 is not visible from the view-
cells corresponding to the visibility event cache of viewpoint
location VP1, but becomes visible from the viewcells corre-
sponding to the visibility event cache of a later viewpoint
location VP2, the graphical object 4004 is delivered to the
client-decoder process by a client-server process after the
time corresponding to VP1 and at or before a time corre-
sponding to VP2. The client-server process delivering this
advertising object is, in some embodiments, a decoder-server
process that is operating on a separate server device than the
corresponding decoder-server process that is delivering the
non-advertising content objects (e.g. 4701 and 4702). As
shown in the FIG. 44A, separate decoder-sever processes
(4478,4479,4480) delivering unique advertising variable vis-
ibility event packets to the corresponding decoder-client pro-

US 9,171,396 B2

249

cesses during delivery visibility event content delivered from
a separate decoder-server processes 4460 and 4461.

The delivery of variable, advertising, cash-store, or mes-
saging objects, as visibility event packets makes very efficient
use of transmission bandwidth and rendering resources,
since, in some embodiments, these variable objects are deliv-
ered to specific decoder-client units only just before they will
become visible to a specific client-user. This is more efficient
than existing methods of in-game advertising delivery, in
which advertising objects, which are not customized for, or
targeted to an individual client-unit, are distributed a-priori
throughout the modeled environment and rendered without
the benefit of a highly precise PVS maintained by visibility
event streaming.

Method of Easily Selecting Advertising Objects Delivered
while Viewing Content Delivered as a Non-Interactive or
Fully Interactive Visibility Event Data Stream.

FIG. 47C is an exemplary perspective view hidden line
diagram showing the same objects as FIG. 47B, but with the
advertising object 4704 highlighted or otherwise accentuated
during an “active period”

FIG. 47C shows object 4704 surrounded by a dashed bor-
der indicating that the object 4704 is accentuated during a
period of time called the “active period”. The accentuation
includes any graphical method of indicating that the exem-
plary object is “active”. Accentuation methods include ren-
dering the object using a different color, shading, lighting or
other graphical style during the active period. Objects ren-
dered using this accentuating methods are called active
objects.

In the present method, objects which can become active
objects include advertising objects (such as object 4704) or
purchasable cash-store objects (such as object 4703).

In exemplary embodiments, the active period includes the
entire period during which the corresponding object is poten-
tially visible, or comprises a period of time which begins after
the object is actually visible to a client user. In the latter case,
the user detects a change in the rendering of the object from
non-active rendering to the accentuated active rendering. In
this case, the transition itself can make the active object more
noticeable to the user.

In exemplary embodiments, only one object is rendered as
an active object at any time. In exemplary embodiments the
user can select an active object (e.g. select the advertising
object 4704) with a single click of a button (e.g. remote
controller, mouse button, game controller button, or gesture
recognition such as Microsoft’s Kinect system, or eye track-
ing devices) or other activator without having to actually
target the active object using a pointing device.

For example, during the active period for object 4704 as
shown in FIG. 47C, a single push of a remote control button
by a client user will be registered as a “click” on the adver-
tising object, without the user having to target the object using
a pointing device.

The present method of accentuating advertising objects
during an active period makes it easier for users to indicate
interest in the advertisement since it does not require active
targeting by a pointing device, which otherwise distracts the
user from the main (e.g. entertainment) interactive or non-
interactive content.

In exemplary embodiments, the active period is determined
by the client unit using information sent from the advertising
server unit which can include unique identifying for adver-
tising objects and information including the visibility of the
advertising object from specific viewcells (e.g. from-viewcell
PVS data derived from DeltaG+ submesh information as
described in exemplary FIG. 33 and related figures, or from

10

20

25

30

35

40

45

50

55

60

65

250

procedural visibility information as described in FIG. 38H
and FIG. 381 and related figures). In some embodiments, the
active period is determined using information sent from a
server unit which indicates the commencement of an active
period for an advertising object that is already stored on the
client unit. In further, embodiments, the active period is deter-
mined by a distance of the user’s viewpoint from the adver-
tisement in the modeled environment. For example, if the
user’s viewpoint is at a distance less than a predetermined
distance, then the advertising information is in an active
period. In this way, embodiments can employ either visibility
(e.g.is the object unoccluded from a view region occupied by
a viewer) or proximity (e.g. is the object within a specified
distance from a view region occupied by a viewer) or both.

FIG. 47D is an exemplary perspective view hidden line
diagram showing the same objects as FIG. 47C, but with the
cash store object 4703 highlighted or otherwise accentuated
during an “active period”.

“Cash store” items or objects include items that can be
purchased by a user for use in the modeled environment of a
game or other interactive content. Increasingly, cash store
items are used to monetize game content. In some cases, the
content publisher is able to make the content itself free to use,
but generates revenue by selling such cash store items as
in-game purchasable content.

One barrier to purchasing cash store items is that the user
typically has to target the desired item using a mouse, game
controller joystick or other pointing device. This requirement
that the cash store object be manually targeted can distract the
user’s from the main entertainment content and therefore
presents a barrier to purchase.

In exemplary embodiments of the present method, a cash
store object is easily selectable by a user during the cash store
object’s active period with a single click of a button (e.g.
remote controller, mouse button, game controller button, or
gesture recognition such as Microsoft’s Kinect system, or eye
tracking devices) or other activator without having to actually
target the active object using a pointing device. For example,
an operating device such as a game controller may have a
“red” button. When a cash store object such has motorcycle
4703 is highlighted during an active period, the user need only
to press the “red” button (e.g., single-click) without having to
move a cursor, via movement of the controller joystick, to the
motorcycle.

FIG. 48A is an exemplary flow diagram showing a method
of selecting an advertising object which does not require the
user to point to or otherwise target the object.

Process flow begins at step 4805 in which an advertising
object is selected for processing prior to user selection of the
advertisement in the modeled environment. In exemplary
embodiments, the advertising object is represented as visibil-
ity event data supplied by a visibility event ad sever (e.g.
server 4450 of FIG. 44A, or server unit 4505 of FIG. 45).

In some embodiments, process flow proceeds to decision
step 4810 which determines if the advertising object is visible
to the user. In alternate embodiments, it is determined if the
advertising object is potentially visible to the user based on
the user’s current position and velocity vector in the modeled
environment.

If, in decision step 4810 it is determined that the advertis-
ing object is not visible to the user, then process flow proceeds
to step 4840 for processing of the next advertising object.

If, on the other hand, it is determined in decision step 4810
that the advertising object is visible or potentially visible to
the user, then process flow proceeds to step 4815.

US 9,171,396 B2

251

In step 4815, the advertising object is rendered using an
accentuating rendering style indicating that the advertising
object is selectable during an active period.

Process flow then proceeds to decision step 4812 in which
it is determined if the client user presses a button on a mouse,
game controller or other input device, or causes some other
input to the process during the active period for the advertis-
ing object (the period during which the ad object is rendered
using a distinguishing or accentuating rendering process).

In exemplary embodiments, step 4812 is conducted on a
visibility event client or receiver unit such as 4471 of FIG.
44A, or 4610 of FIG. 46. In the latter case, the step 4655,
which in some embodiments requires the user to both target
and click the advertising object, is replaced by step 4812 of
FIG. 48A, where only the “click” or corresponding button-
push or other simple indication of selection is required with-
out a targeting step.

If, in decision step 4812 it is determined that the user does
make an indication of selection, then process flow proceeds to
step 4825, indicating selection of the accentuated ad object
during the active period.

Process flow proceeds to step 4830 in which the selection is
recorded as a click on the advertising object. In some embodi-
ments information indicating this selection is sent from a
client unit to an advertising server unit (e.g. as click data 4557
of FIG. 45).

In optional step 4835, additional information indicating
user selection of the ad object is sent to a third web server
which can later be visited by the user and which will show
additional information about the advertised product or ser-
vice associated with the selected advertising object. In some
embodiments, this additional information includes specifica-
tions of the product or service including price, and may
include information which indicates the purchase of the
advertised product or service.

FIG. 48B is an exemplary flow diagram showing a method
of selecting an cash store object which does not require the
user to point to or otherwise target the object.

Process flow begins at step 4855 in which a cash store
object is selected for processing prior to user selection of the
cash store object in the modeled environment. In exemplary
embodiments, the cash store object is represented as visibility
event data supplied by a visibility event cash store sever (e.g.
server 4450 of FIG. 44A, or server unit 4505 of FIG. 45).

In some embodiments, process flow proceeds to decision
step 4810 which determines if the cash store object is visible
to the user. In alternate embodiments, it is determined if the
cash store object is potentially visible to the user based on the
user’s current position and velocity vector in the modeled
environment.

If, in decision step 4860 it is determined that the cash store
object is not visible to the user then process flow proceeds to
step 4890 for processing of the next cash store object.

If, on the other hand, it is determined in decision step 4860
that the cash store object is visible or potentially visible to the
user, then process flow proceeds to step 4865.

In step 4865 the cash store object is rendered using an
accentuating rendering style indicating that the cash store
object is selectable during an active period.

Process flow then proceeds to decision step 4862 in which
it is determined if the client user presses a button on a mouse,
game controller or other input device, or causes some other
input to the process during the active period for the cash store
object (the period during which the ad object is rendered
using a distinguishing or accentuating rendering process).

25

40

45

55

252

In exemplary embodiments, step 4862 is conducted on a
visibility event client or receiver unit such as 4471 of FIG.
44A.

If, in decision step 4862 it is determined that the user does
make an indication of selection then process flow proceeds to
step 4875, indicating selection of the accentuated ad object
during the active period.

Process flow proceeds to step 4880 in which the selection is
recorded as a click on the cash store object corresponding to
a purchase of the object. In some embodiments, information
indicating this selection is sent from a client unit to a cash
store server unit (e.g. as click data 4557 of FIG. 45).

In optional step 4885, additional information indicating
user selection of the ad object is sent to a third web server
which can later be visited by the user and which will show
additional information about the advertised product or ser-
vice associated with the selected cash store object. In some
embodiments, this additional information includes specifica-
tions of the cash-store item (e.g. performance characteristics
asused in a game), price, or other information as well as other
information indicating purchase of the cash store object.
Method Allowing a User to Opt-Out of a Parallel Visibility
Event Data Stream Delivering Advertising Objects

An advantage of the method of providing advertising infor-
mation through a visibility event data stream that is separate
from (but integrated with) the main entertainment visibility
event data stream is that the advertising visibility event data
stream can be stopped without otherwise affecting the enter-
tainment content. As an example of entertainment content and
advertising content, referring to FIG. 47B, objects are 4701
and 4702 pertain to entertainment content while objects 4703
and 4704 pertain to advertising content. In this regard,
according to some embodiments, entertainment content
includes content related to a particular story and/or game flow
in a modeled environment. On the other hand, according to
some embodiments, advertising content includes products or
services that may be selected for purchase.

In some embodiments, the advertising content includes
representations of products or services available for purchase
in the real world similar to conventional banner ads or other
clickable or non-clickable (impression ads) that allow a user
to indicate an interest in a product or service or obtain more
information about the advertised product or service.

In some embodiments the advertising content includes rep-
resentations of products or services available for purchase
and use in the modeled environment (e.g. for in-game use). In
these cases the advertised objects are commonly called “cash
store” items.

Because the entertainment content data stream and the
advertising object data stream are integrated, advertising
objects are seamlessly inserted into the integrated visibility
event data stream to deliver targeted ad objects into the mod-
eled environment just before they would become visible to a
client user.

The present method of encoding, delivering, and display-
ing advertising content as visibility event data which may
include mesh geometry, procedurally generated surfaces, tex-
ture and other 3D data insures that the advertising content is
seamlessly integrated with the entertainment content which is
also displayed as the same types of 3D objects. This allows
the advertising content to be more tightly integrated into the
entertainment content than advertising methods which
employ banner ads and other 2D overlay methods that often
disrupt the user’s entertainment experience, but which are
also easily ignored, as evidence by the common phenomena
of “banner blindness” in which overlay ads are easily ignored
by users and are thereby relatively ineffective.

US 9,171,396 B2

253

As described in FIG. 44A, even when the main entertain-
ment content visibility data stream is based on a pre-scripted
camera motion path and is broadcast to many users simulta-
neously, each of the users can receive a unique advertising
object (or cash store object) parallel data stream that is tar-
geted to the individual user based on demographic or other
preference data.

In the present method, individual users may choose to
opt-out of the advertising visibility event data stream entirely.

FIG. 49A is an exemplary flow diagram showing a method
in which two visibility event streams are delivered simulta-
neously to a user and combined to form an integrated visibil-
ity event data stream.

Data store 4905 contains visibility event packet data com-
prising the main entertainment content. In exemplary
embodiments data store 4905 resides in a visibility event
entertainment content server such as 4445 of FIG. 44A.

Data store 4910 contains visibility event packet data rep-
resenting the advertising objects. In exemplary embodiments,
data store 4910 resides in an advertising server such as 4450
of FIG. 45A.

Process flow begins at decision step 4915 in which the user
makes a decision to opt-out of receiving a visibility event data
streaming containing only advertising objects. In this
embodiment the default state is that the user will receive both
the entertainment content visibility event data stream and the
advertising visibility event data stream. If, in decision step
4915 the user decides not to opt-out of the advertising visibil-
ity event data stream, then the process flow proceeds to step
4920 and the default state is maintained.

In step 4920 the entertainment content visibility event data
stream and the advertising object data are combined into a
unified set of visibility event data that seamlessly inserts
advertising objects into the main entertainment content data
stream. In exemplary embodiments, the integration of the two
visibility event data streams occurs on a visibility event client
unit process such as 4476 of FIG. 44A. Other embodiments
are possible in which the two visibility event data streams are
combined by a visibility event server unit.

If, in decision step 4915, the user chooses (through a menu
selection or other indication) to opt-out of the advertising
visibility event data stream then process flow proceeds to step
4925 in which the user still receives the complete entertain-
ment content visibility event data stream.

In some embodiments, process flow proceeds to step 4930
where the user is charged an additional fee or assessment for
making the selection to opt-out of the advertising visibility
event data steam.

In some embodiments, process flow proceeds to step 4940
where the additional charge assessed is determined to be a
function of the value of the advertising conveyed by the
advertising object visibility event data stream. In some
embodiments this value is determined by auction which
determines the market value of the advertising objects for a
specific entertainment content visibility event data stream.

Advantages of visibility event data streams as compared to
video as amethod to deliver entertainment content include the
option of interactivity, bandwidth efficiency, and the ability to
deliver targeted, selectable advertising objects that are seam-
lessly integrated into the entertainment content. The method
of FIG. 49A provides the additional advantage to the user of
being able to completely turn off the advertising content.

A parallel visibility event data stream for advertising
objects not only provides advertising that is less disruptive to
the user than video-based commercial advertising (which in
broadcast mode completely interrupts the entertainment
stream, typically for several minutes), but can also be turned

10

15

20

25

30

35

40

45

50

55

60

65

254

off by the user without altering the entertainment content
delivered by the main visibility event data stream.
Method Allowing a User to Opt-into of a Parallel Visibility
Event Data Stream Delivering Advertising Objects

The method of FIG. 49 A has the default state of providing
a parallel, integrated visibility event data stream conveying
advertising objects to users and giving users the ability to
opt-out of the advertising stream for an additional charge. In
the present method of FIG. 49B, the default state is to provide
the user with only the entertainment content visibility event
data stream and to allow the user to select an integrated
advertising object visibility event data stream which option-
ally decreases the cost of the entertainment stream for the
user.

FIG. 49B is an exemplary flow diagram showing a method
in which two visibility event streams are delivered simulta-
neously to a user and combined to form an integrated visibil-
ity event data stream.

Data store 4955 contains visibility event packet data com-
prising the main entertainment content. In exemplary
embodiments data store 4955 resides in a visibility event
entertainment content server such as 4445 of FIG. 44A.

Data store 4960 contains visibility event packet data rep-
resenting the advertising objects. In exemplary embodiments,
data store 4960 resides in an advertising server such as 4450
of FIG. 45A.

Process flow begins at decision step 4965 in which the user
makes a decision to opt-into of receiving a visibility event
data streaming containing advertising objects. In this embodi-
ment the default state is that the user will receive only the
entertainment content visibility event data stream and not the
advertising visibility event data stream. If, in decision step
4965 the user decides not to opt-into receiving the advertising
visibility event data stream, then the process flow proceeds to
step 4975 and the default state is maintained.

In step 4920, the entertainment content visibility event data
stream and the advertising object data are combined into a
unified set of visibility event data that seamlessly inserts
advertising objects into the main entertainment content data
stream. In exemplary embodiments, the integration of the two
visibility event data streams occurs on a visibility event client
unit process such as 4476 of FIG. 44A. Other embodiments
are possible in which the two visibility event data streams are
combined by a visibility event server unit.

If, in decision step 4915, the user chooses (through a menu
selection or other indication) to opt-out of the advertising
visibility event data stream then process flow proceeds to step
4925 in which the user still receives the complete entertain-
ment content visibility event data stream.

If, in decision step 4965, the user chooses to receive the
visibility event data stream containing advertising content
then process flow proceeds to step 4970 in which the enter-
tainment content and the advertising object visibility event
data streams are combined.

In some embodiments, process flow proceeds to step 4980
in which the user receives a discount on the price of the
entertainment content visibility event data stream for choos-
ing to also receive the integrated advertising object visibility
event data stream.

In some embodiments, process flow proceeds to step 4990,
in which the discount is determined to be a function of the
value of the advertising conveyed by the advertising visibility
event data stream for the particular entertainment content
visibility event data stream. In some embodiments this value
is determined by an auction process or other method of deter-
mining the market value of the advertising for a particular
entertainment content visibility event data stream.

US 9,171,396 B2

255

Method Allowing a User to Opt-Out of a Parallel Visibility
Event Data Stream Delivering Cash Store Objects

An advantage of the method of providing cash store infor-
mation through a visibility event data stream that is separate
from (but integrated with) the main entertainment visibility
event data stream is that the cash store visibility event data
stream can be stopped without otherwise affecting the enter-
tainment content.

Because the entertainment content data stream and the cash
store object data stream are integrated, cash store objects are
seamlessly inserted into the integrated visibility event data
stream to deliver targeted ad objects into the modeled envi-
ronment just before they would become visible to a client
user.

As described in FIG. 44A, even when the main entertain-
ment content visibility data stream is based on a pre-scripted
camera motion path and is broadcast to many users simulta-
neously, each of the users can receive a unique cash store
object (or cash store object) parallel data stream that is tar-
geted to the individual user based on demographic or other
preference data.

In the present method, individual users may choose to
opt-out of the cash store visibility event data stream entirely.

FIG. 50A is an exemplary flow diagram showing a method
in which two visibility event streams are delivered simulta-
neously to a user and combined to form an integrated visibil-
ity event data stream.

Data store 5005 contains visibility event packet data com-
prising the main entertainment content. In exemplary
embodiments, data store 5005 resides in a visibility event
entertainment content server such as 4445 of FIG. 44A.

Data store 5010 contains visibility event packet data rep-
resenting the cash store objects. In exemplary embodiments,
data store 5010 resides in an cash store server such as 4450 of
FIG. 45A.

Process flow begins at decision step 5015 in which the user
makes a decision to opt-out of receiving a visibility event data
streaming containing only cash store objects. In this embodi-
ment, the default state is that the user receives both the enter-
tainment content visibility event data stream and the cash
store visibility event data stream. If, in decision step 5015, the
user decides not to opt-out of the cash store visibility event
data stream, then the process flow proceeds to step 5020 and
the default state is maintained.

In step 5020, the entertainment content visibility event data
stream and the cash store object data are combined into a
unified set of visibility event data that seamlessly inserts cash
store objects into the main entertainment content data stream.
In exemplary embodiments, the integration of the two visibil-
ity event data streams occurs on a visibility event client unit
process such as 4476 of FIG. 44A. Other embodiments are
possible in which the two visibility event data streams are
combined by a visibility event server unit.

If, in decision step 5015, the user chooses (through a menu
selection or other indication) to opt-out of the cash store
visibility event data stream, then process flow proceeds to
step 5025 in which the user still receives the complete enter-
tainment content visibility event data stream.

In some embodiments, process flow proceeds to step 5030
where the user is charged an additional fee or assessment for
making the selection to opt-out of the cash store visibility
event data steam.

In some embodiments, process flow proceeds to step 5040
where the additional charge assessed is determined to be a
function of the value of the cash store conveyed by the cash
store object visibility event data stream. In some embodi-
ments this value is determined by auction which determines

35

40

45

55

256

the market value of the cash store objects for a specific enter-
tainment content visibility event data stream.

Method Allowing a User to Opt-into of a Parallel Visibility
Event Data Stream Delivering Cash Store Objects

The method of FIG. 50A has the default state of providing
a parallel, integrated visibility event data stream conveying
cash store objects to users and giving users the ability to
opt-out of the cash store stream for an additional charge. In
the present method of FIG. 49B, the default state is to provide
the user with only the entertainment content visibility event
data stream and to allow the user to select an integrated cash
store object visibility event data stream which optionally
decreases the cost of the entertainment stream for the user.

FIG. 50B is an exemplary flow diagram showing a method
in which two visibility event streams are delivered simulta-
neously to a user and combined to form an integrated visibil-
ity event data stream.

Data store 5055 contains visibility event packet data com-
prising the main entertainment content. In exemplary
embodiments data store 5055 resides in a visibility event
entertainment content server such as 4445 of FIG. 44A.

Data store 5060 contains visibility event packet data rep-
resenting the cash store objects. In exemplary embodiments,
data store 5060 resides in an cash store server such as 4450 of
FIG. 45A.

Process flow begins at decision step 5065 in which the user
makes a decision to opt-into of receiving a visibility event
data streaming containing cash store objects. In this embodi-
ment, the default state is that the user will receive only the
entertainment content visibility event data stream and not the
cash store visibility event data stream. If, in decision step
5065 the user decides not to opt-into receiving the cash store
visibility event data stream, then the process flow proceeds to
step 5075 and the default state is maintained.

In step 5020, the entertainment content visibility event data
stream and the cash store object data are combined into a
unified set of visibility event data that seamlessly inserts cash
store objects into the main entertainment content data stream.
In exemplary embodiments the integration of the two visibil-
ity event data streams occurs on a visibility event client unit
process such as 4476 of FIG. 44A. Other embodiments are
possible in which the two visibility event data streams are
combined by a visibility event server unit.

If, in decision step 5015, the user chooses (through a menu
selection or other indication) to opt-out of the cash store
visibility event data stream then process flow proceeds to step
5025 in which the user still receives the complete entertain-
ment content visibility event data stream.

If, in decision step 5065, the user chooses to receive the
visibility event data stream containing cash store content then
process flow proceeds to step 5070 in which the entertainment
content and the cash store object visibility event data streams
are combined.

In some embodiments, process flow proceeds to step 5080
in which the user receives a discount on the price of the
entertainment content visibility event data stream for choos-
ing to also receive the integrated cash store object visibility
event data stream.

In some embodiments process flow proceeds to step 5090,
in which the discount is determined to be a function of the
value of the cash store conveyed by the cash store visibility
event data stream for the particular entertainment content
visibility event data stream. In some embodiments this value
is determined by an auction process or other method of deter-
mining the market value of the cash store objects for a par-
ticular entertainment content visibility event data stream.

US 9,171,396 B2

257

Visibility Event Codec Components Integrated into the Client
and Server Portions of a Game Engine.

FIG. 51 is an exemplary block diagram showing three main
components: 1) visibility event encoder, 2) visibility event
server, and 3) visibility event client, of exemplary embodi-
ments of a visibility event encoding and content delivery
system.

A visibility event encoder process 5110 converts a conven-
tional game or other modeled environment database labeled
5105 into visibility event data packets stored in data store
5130. In exemplary embodiments this encoding process 5110
can employ the methods of first-order from-region visibility
pre-computation and higher-order refinements as described
in the co-pending patent applications serial numbers: PCT/
US2011/042309, PCT/US2011/051403, and U.S. Ser. No.
13/420,436, each of which are incorporated herein by refer-
ence, as well as the methods defined by exemplary figures
FIG. 1-FIG. 50 of the present application.

Existing game engine software frequently consists of a
separate server and client components. In existing game
engines, the server component frequently receives position
data from one or more client components indicating the posi-
tion and state of one or more client user’s (generally their
avatars) within the modeled environment. In some existing
game engines, the server component also manages the navi-
gation (including collision detection and path-finding) of
non-player combatants (npcs) which are Al bots within the
game. These processes are shown in FIG. 51 as server Navi-
gation & Collision Detection process 5136 and server Al-
Pathfinding processes 5135. In these configurations, the
server component of the game engine transmits this position
data to other client units to effect a real-time, multiplayer
game. In some embodiments, the server network code 5138
effects the reception and distribution of this data to and from
game engine client units in a multiplayer, networked game.

Existing game engine client component software receives
this position data from the server and uses it as transformation
matrix data to control the display of player and non-player
combatants through a graphics subsystem which generally
comprises a game engine software layer that interfaces to a
graphics API 5144 (e.g. Microsoft DirectX, or OpenGL)
which in turn sends instructions to a graphics device driver
that drives the graphics hardware.

This partitioning of existing game engines into a separate
server and client components facilitates the integration VE
server 5132 and VE client component into existing game
engines.

The methods of encoding the game database as visibility
event packets that are delivered by a VE server process 5132
to a VE client process 5142 allow the game engine client units
to begin playing the game (or initiate the other visualization
application using the game engine) without having to down-
load the entire modeled environment.

In embodiments, the VE server 5132 delivers VE data 5130
to the VE client 5142 using of navigation-driven predictive
prefetch of visibility event packets based on the movement of
the client user’s viewpoint in the modeled environment. Con-
sequently, in some embodiments, only the part of the model
that is potentially visible in the vicinity of the (client) user’s
starting viewpoint are initially sent by the VE server 5132 to
the VE client 5142. This amount of data (comprising
VM/PVSs and delta-PVS visibility event packets potentially
visible from an initial viewcell) is generally a very small
subset of all of the data of the modeled environment. This
allows the user to begin navigating in the environment very
quickly (typically in seconds, rather than the hours it can take
to download the entire modeled environment). In this way, the

20

35

40

45

50

55

60

65

258

VE data stream provides remote, useable access to the mod-
eled environment in seconds, rather than the hours required
for data replication.

Subsequently, the client-server configuration of the present
invention progressively streams additional visibility event
packets based on the user’s movements in the modeled envi-
ronment.

This streaming of visibility event packets employs a data
format suitable for streaming. The streamed data between the
VE server and the VE client is shown as the double-arrowed
connection labeled 5150 in FIG. 51. In exemplary embodi-
ments, the VE codec uses a navigation-prediction process that
may be executed either on the VE client unit 5142 or the VE
server unit 5132.

If navigation prediction is performed for by the VE server
process 5132, then this process must receive data describing
the client user’s actual viewpoint location in the modeled
environment from the VE client process 5142. If the naviga-
tion prediction process is performed by the VE client process
5142, then the client unit will send prefetch request for spe-
cific VE packet data to the VE server 5132. In either case, the
communication connection 5150 between the VE server 5132
and the VE client 5142 is bidirectional.

Because it employs a speculative, navigation-based
prefetch of data, VE streaming is intrinsically less susceptible
than video streaming (e.g. OnLive game streaming) to packet
loss in low-bandwidth conditions or disconnected, intermit-
tent, or limited bandwidth (DIL) environments; since inter-
mittent failures in the signal are naturally mitigated by buff-
ering in the VE client caches.

Visibility Event Codec Components Integrated into a
Game Engine Using Intermediate Data Formats and APIs to
Separate the Game Engine Data Formats from the Codec
Storage and Transmission Data Formats.

FIG. 52 is an exemplary block diagram showing the main
components of an exemplary embodiment of an interactive
content delivery system employing a visibility event codec
and incorporating a common input format and VE client
interface which isolates the game engine data and the codec
data formats.

The VE encoder, VE server, and VE client software com-
ponents can be integrated into existing game engine server
and client software components. The encoding of game
engine database data 5202 into VE data 5230 should ideally
be performed using a method which does not require the
publisher of the game engine and game engine database to
reveal details of the game engine database 5205 storage for-
mat or the formats used within the game engine rendering
client. Often the game engine database includes proprietary
information that the publisher does not wish to exposeto third
parties.

Similarly, in some implementations, it is desirable to keep
the formats of the stored VE data 5230 and transmitted VE
data 5250 secreted in order to protect publisher’s content.

The present method of encoding game engine data as VE
packets, and interactively delivering these packets by a VE
server 5235 to a VE client 5242 accommodates intermediate
translation formats and APIs which can allow both the encod-
ing of game engine database data as VE packets and the
integration of VE encoder, server, and client components
without exposing details of the game engine storage formats
to the VE codec supplier; and without exposing details of the
VE codec storage and transmission formats to the game
engine developer/user. These intermediate data formats and
APIs are shown in the exemplary flow diagram of FIG. 52.

FIG. 52 is an exemplary flow diagram showing the visibil-
ity event codec components integrated into a game engine

US 9,171,396 B2

259

using intermediate data formats and APIs to separate the
game engine data formats from the visibility event codec
storage and transmission data formats.

In this embodiment, the visibility event encoder process
(labeled step 210) does not directly operate on the game
database data. The game database can include the geometric,
texture, lighting, material, and other data represented in a
format that is useable by the native version of the game
engine. Instead, in the exemplary embodiment of exemplary
flow diagram FIG. 52, the visibility event encoder uses an
intermediate data format labeled “Common Input Format”
5208.

In embodiments, this Common Input Format 5208 is gen-
erated by a Translator Process 5207 operating on the Game
Database data 5205. This Translator Process 5207 converts
the Game Database data into the Common Input Format data.

This common input data format 5205 can be a published
format that allows game engine publishers to convert their
game engine database data 5205 without exposing the game
engine publisher’s proprietary formats and without learning
the format of the VE Data 5230. Common input data formats
can include published, open formats such as Collada Digital
Asset and Exchange Format maintained by the Chronos
group for transferring information representing 3D modeled
environments between software products such as modeling,
rendering, and game engine systems. In embodiments, the
common input formats are supplemented to include proce-
dural modeling parameters, game event triggers, preferred
navigational paths, artificial intelligence parameters for the
autonomous navigation of non-player characters, and other
information required for representing a realistic, navigable
3D environment.

The VE encoder processes the Common Input Format data
using the from-viewcell visibility precomputation methods
and related algorithmic compression methods using either
first-order from-region visibility precomputation or the
higher-order visibility refinements, both of which are
described in the co-pending patent applications serial num-
bers: PCT/US2011/042,309, PCT/US2011/051403, and U S.
Ser. No. 13/420,436, as well as the methods defined by exem-
plary figures FIG. 1-FIG. 50 of the present application.

During interactive or non-interactive streaming of visibil-
ity event data 5230, in some embodiments, the visibility event
packets comprising the visibility event data 5230 are pre-sent
by the VE server process 5232 (or, in some embodiments in
which navigation prediction process is running on the VE
client process 5242 pre-fetched by the VE client process
5242).

The VE Data sent by the VE server 5232 to the VE client
5242, in some embodiments, includes navigation cells
required for the VE server to determine the navigation-based
prefetch using navigation prediction. In addition, the native
components of the Game Engine Server processes (collec-
tively labeled 5262) may also perform collision detection,
and pathfinding processes, e.g. for autonomous bots (non-
player combatants) or for avatars or vehicles controlled by
remote players on the network. In addition to the VE data
stream 5250 other data can be transmitted between the game
engine server network code and the game engine client net-
work code. This bidirectional communication is shown as the
double-arrowed line labeled 5250.

In the implementation shown in FIG. 52, the server game
engine processes does not directly read data from the stored
VE data (230), nor does the server game engine process write
data to the VE data stream 5250. Instead all VE data is
accessed by the game engine server processes through the VE
Server Interface, labeled 5240.

10

15

20

25

30

35

40

45

50

55

60

65

260

The VE Server Interface allows game engine developers to
integrate the VE server component to the server component of
the game engine without knowing the format of the VE Data
(storage labeled 5230), or the VE Streaming Data (5250).

On the client side, the VE Client Process, labeled 5242,
receives the visibility event streaming data (labeled 5250).
The VE Client is responsible for the various decompression
processes described in the related co-pending provisional
applications, and additional processes which convert the vis-
ibility event (delta-PVS) packets into potentially visible sets
(PVSs). The VE Client process may also perform one or more
decryption processes on the VE streamed data.

In the implementation shown in FIG. 52, the Game Engine
Client components (collectively labeled 5285) do not, in
some embodiments, directly access the streamed VE data.
Instead the VE Client component makes the processed
streamed VE data available to the client game engine through
the VE Client Interface (labeled 5265).

As disclosed before, this API separates the streamed VE
data and the client game engine data. This allows the VE
Client and the streamed VE data to be game engine agnostic.
It also allows game engine developers to integrate the VE
codec without knowledge of the codec formats.

FIG. 53 is a schematic illustration of an exemplary unipro-
cessor computer system for implementing system and
method of from-region visibility determination and delta-
PVS based content streaming using conservative linearized
umbral event surfaces according to the present invention. A
computer 5300 implements the method of the embodiments
disclosed herein, wherein the computer housing 5302 houses
amotherboard 5304 which contains a CPU 5316 and memory
5308. The computer 5300 also includes plural input devices,
e.g., a keyboard 5322 and mouse 5324, and a display card
5310 for controlling monitor 5320. In addition, the computer
system 5300 further includes a floppy disk drive 5314 and
other removable media devices (e.g., compact disc 5319,
tape, and removable magneto-optical media), a hard disk
5312, or other fixed, high density media drives, connected
using an appropriate device bus, e.g., a SCSI bus or an
Enhanced IDE bus. Although compact disc 5319 is shown in
a CD caddy, the compact disc 5319 can be inserted directly
into CD-ROM players which do not require caddies. Also
connected to the same device bus or another device bus, the
computer 5500 may additionally include a compact disc
reader/writer 5318 or a compact disc jukebox. In addition, a
printer also provides printed lists of image primitives, expo-
sure events, and three-dimensional images.

The system further comprises at least one computer read-
able media. Examples of such computer readable media are
compact discs, hard disks, floppy disks, tape, magneto-opti-
cal disks, PROMS (EPROMs, EEPROMs, Flash PROMs),
DRAM, SRAM, etc. Stored on any one or on a combination
of the computer readable media, the present invention
includes software for controlling both the hardware of the
computer 5300 and for enabling the computer 5300 to interact
with a human user. According to some embodiments, such
software includes, but is not limited to, device drivers, oper-
ating systems and user applications, such as software devel-
opment tools. Such computer readable media further includes
the computer program product of the embodiments for imple-
menting a method of from-region visibility precomputation
and delta-PVS based content streaming employing conserva-
tive linearized umbral event surfaces.

FIG. 54 is a block diagram of a processor 5400 utilized in
computer 5300. The block diagram of the processor 5400
may further be utilized in any client unit, server unit, encoder
unit, or decoder unit. Further, the processor 5400 may be

US 9,171,396 B2

261

programmed to perform any of the processes (e.g., flow-
charts) disclosed herein). In one embodiment, the processor
5400 includes a CPU 5480 which processes data and instruc-
tions stored in main memory 5440 and/or ROM 5450. The
CPU 5480 also processes information stored on the disk 5410
or CD-ROM 5420. As an example, the CPU 5480 is an IBM
System X from IBM of America employing at least one
Xenon processor from Intel of America or an Opteron pro-
cessor from AMD of America. Thus, instructions correspond-
ing to a process in a mobile device is stored on any one of the
disk 5410, CD-ROM 5420, main memory 5440 or ROM
5450.

In one embodiment, the processor 5400 also includes a
network interface 5475, such as an Intel Ethernet PRO net-
work interface card from Intel Corporation of America, a
display controller 5430, such as a NVIDIA GeForce GTX
graphics adaptor from NVIDIA Corporation of America for
interfacing with a display 5402, such as a Hewlett Packard HP
1.2445w LCD monitor. The processor 5400 also includes an
1/0 interface 5490 for interfacing with a keyboard 5495 and
pointing device 5485, such as a roller ball or mouse. Accord-
ing to some embodiments, the disk controller 5460 intercon-
nects disk 5410, such as a hard disk drive or FLASH memory
drive, and CD-ROM 5420 or DVD drive with bus 5470, which
is an ISA, EISA, VESA, PCI, or similar for interconnecting
all of the components of the server 5400. A description of the
general features and functionality of the display 5402, key-
board 5495 and pointing device 5485, as well as the display
controller 5430, disk controller 5460, network interface 5475
and I/O interface 5490 is also omitted for brevity as these
features are well known. Of course, other processor and hard-
ware vendors and types are known in the art such as Freescale
ColdFire, i.MX and ARM processors from Freescale Corpo-
ration of America.

The example processor 5400 of FIG. 54 is a hardware
platform of a computing device, such as a PC, and CPU 580
is an Intel Pentium Processor, or any other desired processor
known in the art. The computer-readable instructions stored
on any one of the main memory 5440, ROM 5450, disk 5410
or CD-ROM 5420 is provided as a utility application, back-
ground daemon, or component of an operating system, or
combination thereof, executing in conjunction with CPU
5480 and an operating system such as Microsoft VISTA,
UNIX, Solaris, LINUX, Apple MAC-OS and other systems
known to those skilled in the art.

Main memory 5440 is a random access memory (RAM),
FLASH memory, EEPROM memory, or the like, while ROM
5450 is Read Only Memory, such as PROMs. Further descrip-
tions of the main memory 5440 and the ROM 5450 are omit-
ted for brevity as such memory is well known.

The hardware illustrated in FIG. 54 may be used to imple-
ment any of the flow charts disclosed herein either on a client
unit or a server unit.

Obviously, numerous modifications and variations of the
present advancements are possible in light ofthe above teach-
ings. It is therefore to be understood that within the scope of
the appended claims, the advancements may be practiced
otherwise than as specifically described herein.

The invention claimed is:

1. A computer-implemented method comprising steps of:

a) determining, using a processor, one or more portions of
a procedurally generated 3D graphical object not
occluded from a second viewcell and occluded from a
first viewcell, the procedurally generated 3D graphical
object comprising graphics primitives generated by a
generation procedure using procedural parameters,

10

15

20

25

30

35

40

45

50

55

60

65

262

wherein the first and second viewcells have a plurality of
viewcell vertices,
wherein both non-procedural 3D graphical objects and
the procedurally generated 3D graphical object com-
prise mesh polygons forming polygon meshes, and
wherein the one or more portions of the procedurally
generated graphical object not occluded from the sec-
ond viewcell and occluded from the first viewcell are
determined by steps of:
al) executing a generation procedure to generate the
mesh polygons comprising the procedurally gener-
ated object,
a2) determining at least one first-order silhouette edge of
the polygon meshes, the at least one first-order silhou-
ette edge being an edge of the polygon meshes having:
first and second polygons sharing the at least one
first-order silhouette edge,
the first polygon back-facing to each viewcell vertex
from the plurality of viewcell vertices of the second
viewcell,
the second polygon front-facing to at least one view-
cell vertex from the plurality of viewcell vertices of
the second viewcell, and
the first and second polygons having a back-facing
orientation with respect to each other,
a3) determining at least one supporting polygon
between the second viewcell and the polygon meshes,
the at least one supporting polygon being determined
between the second viewcell and at least one vertex of
the at least one first-order silhouette edge,
a4) constructing at least one wedge from the at least one
supporting polygon, the at least one wedge extending
away from the second viewcell,
a5) determining one or more intersections of the at least
one wedge with the mesh polygons, and
a6) determining the set of the mesh polygons or frag-
ments of the mesh polygons not occluded from the
second viewcell using the determined one or more
intersections;

b) determining, using the processor, values of the proce-
dural parameters, which define the one or more portions
of the procedurally generated 3D graphical object not
occluded from the second viewcell and occluded from
the first viewcell; and

¢) storing the values of the procedural parameters, which
define the one or more portions of the procedurally gen-
erated 3D graphical object not occluded from the second
viewcell and occluded from the first viewcell.

2. The computer-implemented method of claim 1, further

comprising the step of:

d) transmitting the values of the procedural parameters to a
client computing device that uses the determined one or
more parameters to generate and display the procedur-
ally generated 3D graphical object.

3. The computer-implemented method of claim 1, further

comprising the step of:

d) transmitting the values of the procedural parameters if
any portion of the procedurally generated 3D graphical
object is unoccluded from the second viewcell and
occluded from the first viewcell.

4. The computer-implemented method of claim 1, wherein
the step of determining the at least one supporting polygon
further comprises:

determining, for the at least one first-order silhouette edge,
a supporting viewcell vertex defined as a first viewcell
vertex from the plurality of viewcell vertices encoun-
tered in pivoting a plane about the first-order silhouette

US 9,171,396 B2

263

edge toward the second viewcell, the pivoted plane
being incident on the first-order silhouette edge and not
front-facing with respect to each viewcell vertex from
the plurality of viewcell vertices.

5. The computer-implemented method of claim 1, wherein
the step of determining the at least one supporting polygon
further comprises:

determining, for the at least one first-order silhouette edge,
a supporting viewcell vertex from the plurality of view-
cell vertices, the supporting viewcell vertex forming a
plane with the first-order silhouette edge, the plane hav-
ing a same sidedness orientation as the first polygon
sharing the first-order silhouette edge, and the plane not
front-facing with respect to each viewcell vertex from
the plurality of viewcell vertices.

6. The computer-implemented method of claim 1, wherein
upon determination that the at least one first-order silhouette
edge and another first-order silhouette edge share a vertex
forming an inside corner vertex of the graphical object, the at
least one supporting polygon is formed by the inside corner
vertex and at least two viewcell vertices from the plurality of
viewcell vertices, the at least two viewcell vertices and the
inside corner vertex forming a plane,

the plane having a same sidedness orientation as the first
polygon sharing the at least one first-order silhouette
edge, and

the plane not front-facing with respect to each viewcell
vertex from the plurality of viewcell vertices.

7. The computer-implemented method of claim 1, further

comprising the steps of:

e) determining a likelihood that a user viewpoint undergoes
movement from the first viewcell to the second viewcell,
and

f) sending information representing the generation proce-
dure and sending the values of the procedural parameters
upon determination that the likelihood that the view-
point undergoes movement from the first viewcell to the
second viewcell is greater than a predetermined thresh-
old.

8. A computer-implemented method conducted on a client

computing device, the method comprising steps of:

a) displaying a first set of graphics information not
occluded from a second viewcell and occluded from a
first viewcell,
the first and second viewcells having a plurality of view-

cell vertices,
the first set of graphics information including one or
more 3D objects in a computer-represented environ-
ment,
the first set of graphics information comprising graphics
primitives generated using procedural parameters,
and mesh polygons forming polygon meshes,
wherein one or more portions of the procedurally gen-
erated first set of graphics information not occluded
from the second viewcell and occluded from the first
viewcell are determined by:
al) determining at least one first-order silhouette edge
of the polygon meshes, the at least one first-order
silhouette edge being an edge of the polygon
meshes having:
first and second polygons sharing the at least one
first-order silhouette edge,
the first polygon back-facing to each viewcell ver-
tex from the plurality of viewcell vertices of the
second viewcell,

10

15

20

25

30

40

45

50

55

60

65

264

the second polygon front-facing to at least one
viewcell vertex from the plurality of viewcell
vertices of the second viewcell, and
the first and second polygons having a back-facing
orientation with respect to each other;
a2) determining at least one supporting polygon
between the second viewcell and the polygon
meshes, the at least one supporting polygon being
determined between the second viewcell and at
least one vertex of the at least one first-order sil-
houette edge;
a3) constructing at least one wedge from the at least
one supporting polygon, the at least one wedge
extending away from the second viewcell;
a4) determining one or more intersections of the at
least one wedge with the mesh polygons; and
a5) determining the set of the mesh polygons or frag-
ments of the mesh polygons not occluded from the
second viewcell using the determined one or more
intersections;

b) receiving, from a server, a second set of graphics infor-
mation upon determination that at least one predeter-
mined condition is satisfied, the second graphics infor-
mation not occluded from the second viewcell and
occluded from the first viewcell, the second set of graph-
ics information including at least one 3D advertising
object;

¢) displaying the second set of graphics information within
the displayed computer-represented environment;

d) displaying the second set of graphics information with a
visual indication that the second set of graphics infor-
mation is selectable with only a single button press; and

e) transmitting a selection result of the displayed second set
of graphics information to the server.

9. The computer-implemented method of claim 8, wherein
the at least one predetermined condition is satisfied upon
determination that a likelihood that a user viewpoint moves
from the first viewcell to the second viewcell is greater than a
predetermined threshold.

10. The computer-implemented method of claim 8,
wherein the at least one predetermined condition is satisfied
upon determination that a likelihood that a user viewpoint
moves from the first viewcell to the second viewcell is greater
than a predetermined threshold and that an available trans-
mission bandwidth between a server and the client computing
device exceeds a predetermined bandwidth threshold.

11. The computer-implemented method of claim 8,
wherein the step d) of displaying the second set of graphics
information further comprises displaying with the visual indi-
cation that the second set of graphics information is selectable
with only the single button press only if the 3D advertising
object is not occluded.

12. The computer-implemented method of claim 11,
wherein the displayed visual indication is a highlight around
the 3D advertising object.

13. The computer-implemented method of claim 12,
wherein the displayed 3D advertising object is selectable by a
single-click activation of a client input device regardless of a
position of a user viewpoint in the second viewcell.

14. The computer-implemented method of claim 8,
wherein the displayed second set of graphics information is
selectable by a single-click activation of a client input device
regardless of a position of a user viewpoint in the second
viewcell.

15. The computer-implemented method of claim 14,
wherein the displayed second set of graphics information

US 9,171,396 B2

265

represents an object available for purchase, the object being
usable within a computer-implemented modeled environ-
ment.

16. The computer-implemented method of claim 8, further
comprising:

providing a fee-based option to prevent display of the sec-

ond set of graphics information.

17. The computer-implemented method of claim 16,
wherein a fee assessed to auser of the client computing device
is reduced upon determination that the user did not select the
fee-based option to prevent display ofthe second set of graph-
ics information.

18. A system, comprising:

an encoder configured to perform a computer-imple-

mented encoding method comprising steps of:

al) determining, using a processor, one or more portions
of a procedurally generated 3D graphical object not
occluded from a second viewcell and occluded from a
first viewcell, the procedurally generated 3D graphi-
cal object comprising graphics primitives generated
by a generation procedure using procedural param-
eters,

a2) determining, using the processor, values of the pro-
cedural parameters, which define the one or more
portions of the procedurally generated 3D graphical
object not occluded from the second viewcell and
occluded from the first viewcell, and

a3) storing the values of the procedural parameters,
which define the one or more portions of the proce-
durally generated 3D graphical object not occluded
from the second viewcell and occluded from the first
viewcell,

a server configured to:

bl) transmit the values of the procedural parameters if
any portion of the procedurally generated 3D graphi-
cal object is unoccluded from the second viewcell and
occluded from the first viewcell; and

a client configured to:

cl) display a first set of graphics information not
occluded from the second viewcell and occluded from
the first viewcell, the first set of graphics information
including one or more 3D objects in a computer-
represented environment,

c2) receive, from the server, a second set of graphics
information upon determination that at least one pre-
determined condition is satisfied, the second graphics
information not occluded from the second viewcell
and occluded from the first viewcell, the second set of
graphics information including at least one 3D adver-
tising object,

c3) display the second set of graphics information within
the displayed computer-represented environment,

c4) the second set of graphics information with a visual
indication that the second set of graphics information
is selectable with only a single button press, and

¢5) transmit a selection result of the displayed second set
of graphics information to the server,

wherein the first and second viewcells have a plurality of

viewcell vertices,

wherein both non-procedural 3D graphical objects and the

procedurally generated 3D graphical object comprise
mesh polygons forming polygon meshes, and

wherein the one or more portions of the procedurally gen-

erated 3D graphical object not occluded from the second
viewcell and occluded from the first viewcell are deter-
mined by steps of:

10

15

20

25

30

35

40

45

50

55

60

65

266

d1) determining at least one first-order silhouette edge of
the polygon meshes, the at least one first-order silhou-
ette edge being an edge of the polygon meshes having:
first and second polygons sharing the at least one
first-order silhouette edge,

the first polygon back-facing to each viewcell vertex
from the plurality of viewcell vertices of the second
viewcell,

the second polygon front-facing to at least one view-
cell vertex from the plurality of viewcell vertices of
the second viewcell, and

the first and second polygons having a back-facing
orientation with respect to each other,

d2) determining at least one supporting polygon
between the second viewcell and the polygon meshes,
the at least one supporting polygon being determined
between the second viewcell and at least one vertex of
the at least one first-order silhouette edge,

d3) constructing at least one wedge from the at least one
supporting polygon, the at least one wedge extending
away from the second viewcell,

d4) determining one or more intersections of the at least
one wedge with the mesh polygons, and

d5) determining the set of the mesh polygons or frag-
ments of the mesh polygons not occluded from the
second viewcell using the determined one or more
intersections.

19. A system, comprising:
a server including a memory to store:

a first set of graphics information representing a proce-
dure for generating a procedurally generated 3D
graphical object using procedural parameters, and

a second set of graphics information representing values
of the procedural parameters which define the one or
more portions of the procedurally generated 3D
graphical object not occluded from a second viewcell
and occluded from a first viewcell;

a processor configured to:

determine a likelihood that a user viewpoint moves from
the first viewcell to the second viewcell, and

transmit the first and second sets of graphics information
to a client only if the likelihood that a client-user
viewpoint moves from the first viewcell to the second
viewcell exceeds a movement threshold; and

a client computing device configured to:

upon determination that the likelihood that that the cli-
ent-user viewpoint moves from the first viewcell to
the second viewcell exceeds the movement threshold,
and

generate a portion of the procedurally generated 3D
graphical object using the transmitted first and second
sets of graphics information including the values of
the procedural parameters, which define the one or
more portions of the procedurally generated 3D
graphical object not occluded from the second view-
cell and occluded from the first viewcell,

wherein the first and second viewcells have a plurality of
viewcell vertices,

wherein both non-procedural 3D graphical objects and the
procedurally generated 3D graphical object comprise
mesh polygons forming polygon meshes, and

wherein the one or more portions of a procedurally gener-
ated 3D graphical object not occluded from a second
viewcell and occluded from a first viewcell are deter-
mined by steps of:

US 9,171,396 B2

267

al) determining at least one first-order silhouette edge of
the polygon meshes, the at least one first-order silhouette
edge being an edge of the polygon meshes having:
first and second polygons sharing the at least one first-
order silhouette edge,
the first polygon back-facing to each viewcell vertex
from the plurality of viewcell vertices of the second
viewcell,
the second polygon front-facing to at least one viewcell
vertex from the plurality of viewcell vertices of the
second viewcell, and
the first and second polygons having a back-facing ori-
entation with respect to each other,
a2) determining at least one supporting polygon between
the second viewcell and the polygon meshes, the at least
one supporting polygon being determined between the
second viewcell and at least one vertex of the at least one
first-order silhouette edge,
a3) constructing at least one wedge from the at least one
supporting polygon, the at least one wedge extending
away from the second viewcell,
a4) determining one or more intersections of the at least
one wedge with the mesh polygons, and
a5) determining the set of the mesh polygons or fragments
of the mesh polygons not occluded from the second
viewcell using the determined one or more intersections.
20. The system of claim 19, wherein the procedurally gen-

erated 3D graphical object represents a 3D advertising object.

21. A non-transitory computer readable storage medium

having computer executable instructions stored thereon,
which when executed by a processor in a server, causes the
server to execute a method comprising steps of:

a) determining, using a processor, one or more portions of
a procedurally generated 3D graphical object not
occluded from a second viewcell and occluded from a
first viewcell, the procedurally generated 3D graphical
object comprising graphics primitives generated by a
generation procedure using procedural parameters,
wherein the first and second viewcells have a plurality of
viewcell vertices,

wherein both non-procedural 3D graphical objects and
the procedurally generated 3D graphical object com-
prise mesh polygons forming polygon meshes, and

wherein the one or more portions of a procedurally gen-
erated 3D graphical object not occluded from a sec-
ond viewcell and occluded from a first viewcell are
determined by steps of:

al) executing the generation procedure to generate mesh
polygons comprising the procedurally generated
object,

10

15

20

25

30

35

268

a2) determining at least one first-order silhouette edge of
the polygon meshes, the at least one first-order silhou-
ette edge being an edge of the polygon meshes having:

first and second polygons sharing the at least one first-
order silhouette edge,

the first polygon back-facing to each viewcell vertex
from the plurality of viewcell vertices of the second
viewcell,

the second polygon front-facing to at least one viewcell
vertex from the plurality of viewcell vertices of the
second viewcell, and

the first and second polygons having a back-facing ori-
entation with respect to each other,

a3) determining at least one supporting polygon
between the second viewcell and the polygon meshes,
the at least one supporting polygon being determined
between the second viewcell and at least one vertex of
the at least one first-order silhouette edge,

a4) constructing at least one wedge from the at least one
supporting polygon, the at least one wedge extending
away from the second viewcell,

a5) determining one or more intersections of the at least
one wedge with the mesh polygons, and

a6) determining the set of the mesh polygons or frag-
ments of the mesh polygons not occluded from the
second viewcell using the determined one or more
intersections;

b) determining, using the processor, values of the proce-
dural parameters, which define the one or more portions
of the procedurally generated 3D graphical object not
occluded from the second viewcell and occluded from
the first viewcell; and

¢) storing the values of the procedural parameters, which
define the one or more portions of the procedurally gen-
erated 3D graphical object not occluded from the second
viewcell and occluded from the first viewcell.

22. The non-transitory computer-readable storage medium

according to claim 21,

wherein the procedurally generated 3D graphical object
represents a 3D advertising object, and

wherein the 3D advertising object is selectable by a only
single-click activation of a client input device regardless
of a position of a user viewpoint in the second viewcell.

23. The non-transitory computer readable storage medium

45 according to claim 21, further comprising:

d) transmitting the values of the procedural parameters to a
client computing device if any portion of the procedur-
ally generated graphical object is unoccluded from the
second viewcell and occluded from the first viewcell.

#* #* #* #* #*

